Abstract
Objective
To modify the non-porous surface membrane of a tissue-engineered laryngeal scaffold to allow effective cell entry.
Methods
The mechanical properties, surface topography and chemistry of polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane were characterised. A laser technique introduced surface perforations. Micro computed tomography generated porosity data. Scaffolds were seeded with cells, investigated histologically and proliferation studied. Incubation and time effects were assessed.
Results
Laser cutting perforated the polymer, connecting the substructure with the ex-scaffold environment and increasing porosity (porous, non-perforated = 87.9 per cent; porous, laser-perforated at intensities 3 = 96.4 per cent and 6 = 89.5 per cent). Cellular studies confirmed improved cell viability. Histology showed cells adherent to the scaffold surface and cells within perforations, and indicated that cells migrated into the scaffolds. After 15 days of incubation, scanning electron microscopy revealed an 11 per cent reduction in pore diameter, correlating with a decrease in Young's modulus.
Conclusion
Introducing surface perforations presents a viable method of improving polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane as a tissue-engineered scaffold.
To modify the non-porous surface membrane of a tissue-engineered laryngeal scaffold to allow effective cell entry.
Methods
The mechanical properties, surface topography and chemistry of polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane were characterised. A laser technique introduced surface perforations. Micro computed tomography generated porosity data. Scaffolds were seeded with cells, investigated histologically and proliferation studied. Incubation and time effects were assessed.
Results
Laser cutting perforated the polymer, connecting the substructure with the ex-scaffold environment and increasing porosity (porous, non-perforated = 87.9 per cent; porous, laser-perforated at intensities 3 = 96.4 per cent and 6 = 89.5 per cent). Cellular studies confirmed improved cell viability. Histology showed cells adherent to the scaffold surface and cells within perforations, and indicated that cells migrated into the scaffolds. After 15 days of incubation, scanning electron microscopy revealed an 11 per cent reduction in pore diameter, correlating with a decrease in Young's modulus.
Conclusion
Introducing surface perforations presents a viable method of improving polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane as a tissue-engineered scaffold.
Original language | English |
---|---|
Pages (from-to) | 135-148 |
Journal | Journal of Laryngology and Otology |
Volume | 133 |
DOIs | |
Publication status | Published - 21 Mar 2019 |
Externally published | Yes |