Imprinted Gene Expression and Function of the Dopa Decarboxylase Gene in the Developing Heart

Adam R. Prickett, Bertille Montibus, Nikolaos Barkas, Samuele M. Amante, Maurício M. Franco, Michael Cowley, William Puszyk, Matthew F. Shannon, Melita D. Irving, Marta Madon-Simon, Andrew Ward, Reiner Schulz, H. Scott Baldwin, Rebecca J. Oakey

Research output: Contribution to journalArticlepeer-review

7 Citations (SciVal)

Abstract

Dopa decarboxylase (DDC) synthesizes serotonin in the developing mouse heart where it is encoded by Ddc_exon1a, a tissue-specific paternally expressed imprinted gene. Ddc_exon1a shares an imprinting control region (ICR) with the imprinted, maternally expressed (outside of the central nervous system) Grb10 gene on mouse chromosome 11, but little else is known about the tissue-specific imprinted expression of Ddc_exon1a. Fluorescent immunostaining localizes DDC to the developing myocardium in the pre-natal mouse heart, in a region susceptible to abnormal development and implicated in congenital heart defects in human. Ddc_exon1a and Grb10 are not co-expressed in heart nor in brain where Grb10 is also paternally expressed, despite sharing an ICR, indicating they are mechanistically linked by their shared ICR but not by Grb10 gene expression. Evidence from a Ddc_exon1a gene knockout mouse model suggests that it mediates the growth of the developing myocardium and a thinning of the myocardium is observed in a small number of mutant mice examined, with changes in gene expression detected by microarray analysis. Comparative studies in the human developing heart reveal a paternal expression bias with polymorphic imprinting patterns between individual human hearts at DDC_EXON1a, a finding consistent with other imprinted genes in human.

Original languageEnglish
Article number676543
JournalFrontiers in Cell and Developmental Biology
Volume9
DOIs
Publication statusPublished - 22 Jun 2021

Bibliographical note

Funding Information:
We thank Dr. Matt Arno and the KCL genomics facility for core equipment usage. We acknowledge support from the Department of Health via the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy?s and St Thomas? NHS Foundation Trust in partnership with King?s College London for access to the genomics core facility at the time directed by Dr. Alka Saxena. We thank James Cain for help with the figures, Dr. Heba Saadeh for assistance with bioinformatics analysis of the expression microarray and Dr. Sabrina B?hm for technical support. We thank the MRC-Wellcome Trust Human Developmental Biology Resource (HDBR) (http://www.hdbr.org) from the Institute of Genetic Medicine, Newcastle and Institute of Child Health, London for human fetal tissues. Funding. This work was supported by the British Heart Foundation Project Grant (PG/13/35/30236) (RO) and PhD studentship FS/08/051/25748 (to RO undertaken by AP), the Wellcome Trust Project Grant (084358/Z/07/Z) (RO), the Medical Research Council Project Grant (G1001689) (RO), the National Institutes of Health (1R01 HL118386) (HB), and EFIC facility, the National Institute of Health (S10-RR27661) (HB).

Keywords

  • dopa decarboxylase
  • heart
  • human
  • imprinting
  • knock-out
  • mouse

ASJC Scopus subject areas

  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Imprinted Gene Expression and Function of the Dopa Decarboxylase Gene in the Developing Heart'. Together they form a unique fingerprint.

Cite this