TY - JOUR
T1 - Impedance characteristics of transparent GNP-Pt ink catalysts for flexible dye sensitized solar cells
AU - Baker, J.
AU - McGettrick, J.D.
AU - Gethin, D.T.
AU - Watson, T.M.
PY - 2015/6/6
Y1 - 2015/6/6
N2 - By thermally reducing platinum onto the surface of Graphene Nanoplatelet (GNP) particles the catalytic activity of the iodide/triiodide reaction in dye-sensitized solar cells (DSC) can be improved significantly. The GNP-Pt particles can be used to formulate a highly catalytic yet transparent ink, which can be deposited by a number of different technologies such as flexographic printing, K-bar, slot-die and spin coating. The catalytic performance of the ink has been characterized using impedance spectroscopy, the impedance spectra show a high frequency impedance curve often seen in carbon electrodes. The origin of this impedance has a number of opposing hypotheses which are critically examined. The data supports the hypothesis that the high frequency curve is due to a contact resistance between the GNP-Pt ink and the FTO. In addition to the high frequency curve, a previously unresolved low frequency impedance is identified. When fabricated into DSCs the ink catalyst demonstrates cell efficiencies up to 5.2% and is shown to have a similar performance to conventional sputtered platinum when used in a reverse illuminated DSC (through the counter electrode). The first flexible reverse illuminated DSC with a GNP-Pt ink catalyst, suitable for roll-to-roll deposition is reported with an efficiency of 2.6%.
AB - By thermally reducing platinum onto the surface of Graphene Nanoplatelet (GNP) particles the catalytic activity of the iodide/triiodide reaction in dye-sensitized solar cells (DSC) can be improved significantly. The GNP-Pt particles can be used to formulate a highly catalytic yet transparent ink, which can be deposited by a number of different technologies such as flexographic printing, K-bar, slot-die and spin coating. The catalytic performance of the ink has been characterized using impedance spectroscopy, the impedance spectra show a high frequency impedance curve often seen in carbon electrodes. The origin of this impedance has a number of opposing hypotheses which are critically examined. The data supports the hypothesis that the high frequency curve is due to a contact resistance between the GNP-Pt ink and the FTO. In addition to the high frequency curve, a previously unresolved low frequency impedance is identified. When fabricated into DSCs the ink catalyst demonstrates cell efficiencies up to 5.2% and is shown to have a similar performance to conventional sputtered platinum when used in a reverse illuminated DSC (through the counter electrode). The first flexible reverse illuminated DSC with a GNP-Pt ink catalyst, suitable for roll-to-roll deposition is reported with an efficiency of 2.6%.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84931265954&partnerID=MN8TOARS
U2 - 10.1149/2.0961508jes
DO - 10.1149/2.0961508jes
M3 - Article
SN - 0013-4651
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
ER -