Imaging of hypochlorous acid in mitochondria using an asymmetric near-infrared fluorescent probe with large Stokes shift

Wei Hu, Taotao Qiang, Chenchen Li, Longfang Ren, Fei Chang, Baoshuai Wang, Mingli Li, Xinjian Song, Tony James

Research output: Contribution to journalArticlepeer-review

Abstract

Small-molecule near-infrared (NIR) imaging facilitates deep tissue penetration, low autofluorescence, non-invasive visualization, and a relatively simple operation. As such it has emerged as a popular technique for tracking biological species and events. However, the small Stokes shift of most NIR dyes often results in a low signal-to-noise ratio and self-quenching due to crosstalk between the excitation and emission spectra. With this research, we developed a NIR-based fluorescent probe WD-HOCl for hypochlorous acid (HOCl) detection using the NIR dye TJ730 as the fluorophore, which exhibits a large Stokes shift of 156 nm, with no crosstalk between the excitation and emission spectra. It contains acyl hydrazide as the responsive group and a pyridinium cation as the mitochondria-targeting group. The fluorescence intensity of WD-HOCl was enhanced by 30.1-fold after reacting with HOCl. Imaging studies performed using BV-2 cells indicated that WD-HOCl could be used for endogenous HOCl detection and imaging in living cells exposed to glucose and oxygen deprivation/reperfusion. Finally, we demonstrated that inhibiting the expression of NOX2 reduced the HOCl levels and the severity of oxidative stress during stroke in a mouse model.

Original languageEnglish
Pages (from-to) 11140-11149
JournalChemical Science
Volume13
Early online date8 Sep 2022
DOIs
Publication statusPublished - 14 Oct 2022

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint

Dive into the research topics of 'Imaging of hypochlorous acid in mitochondria using an asymmetric near-infrared fluorescent probe with large Stokes shift'. Together they form a unique fingerprint.

Cite this