Identification of highly selective covalent inhibitors by phage display

Shiyu Chen, Scott Lovell, Sumin Lee, Matthias Fellner, Peter D Mace, Matthew Bogyo

Research output: Contribution to journalArticlepeer-review

42 Citations (SciVal)


Molecules that covalently bind macromolecular targets have found widespread applications as activity-based probes and as irreversibly binding drugs. However, the general reactivity of the electrophiles needed for covalent bond formation makes control of selectivity difficult. There is currently no rapid, unbiased screening method to identify new classes of covalent inhibitors from highly diverse pools of candidate molecules. Here we describe a phage display method to directly screen for ligands that bind to protein targets through covalent bond formation. This approach makes use of a reactive linker to form cyclic peptides on the phage surface while simultaneously introducing an electrophilic 'warhead' to covalently react with a nucleophile on the target. Using this approach, we identified cyclic peptides that irreversibly inhibited a cysteine protease and a serine hydrolase with nanomolar potency and exceptional specificity. This approach should enable rapid, unbiased screening to identify new classes of highly selective covalent inhibitors for diverse molecular targets.

Original languageEnglish
Pages (from-to)490-498
Number of pages9
JournalNature Biotechnology
Issue number4
Early online date16 Nov 2020
Publication statusPublished - 30 Apr 2021


  • Cell Surface Display Techniques/methods
  • Cysteine Proteinase Inhibitors/isolation & purification
  • Hydrolases/antagonists & inhibitors
  • Models, Molecular
  • Molecular Dynamics Simulation
  • Molecular Structure
  • Peptides, Cyclic/isolation & purification
  • Proteins/antagonists & inhibitors


Dive into the research topics of 'Identification of highly selective covalent inhibitors by phage display'. Together they form a unique fingerprint.

Cite this