Abstract
Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN4C12, CoN3C10,porp and CoN2C5. The O2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O2-adsorption strength, we conclude that cobalt-based moieties bind O2 too weakly for efficient O2 reduction.
Original language | English |
---|---|
Article number | 957 |
Journal | Nature Communications |
Volume | 8 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Dec 2017 |
Bibliographical note
Funding Information:This research was supported by ANR under contract 2011 CHEX 004 01 and by the Project ‘PEMFC-SUDOE’ -SOE1/P1/E0293 which is co-financed by the European Regional Development Fund in the framework of the Interreg Sudoe programme. We also acknowledge Synchrotron SOLEIL (Gif-sur Yvette, France) for provision of synchrotron radiation facilities at beamline SAMBA (proposal numbers 20120701 and 20150913), Valérie Briois for valuable discussions and Álvaro Reyes-Carmona (formerly at Université Montpellier, now at ICIQ, Spain) for sharing the benchmark IrO2 polarization curve.
Publisher Copyright:
© 2017 The Author(s).
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy