Abstract

Ferroelectrets are piezoelectrically-active polymer foams that can convert externally applied loads into electric charge for sensor or energy harvesting applications. Existing processing routes used to create pores of the desired geometry and degree of alignment appropriate for ferroelectrets are based on complex mechanical stretching and chemical dissolution steps. In this work, we present the first demonstration of the use of freeze casting as a cost effective and environmentally friendly approach to produce polymeric ferroelectrets. The pore morphology, phase analysis, relative permittivity and direct piezoelectric charge coefficient (d33) of porous poly(vinylidene fluoride) (PVDF) based ferroelectrets with porosity volume fractions ranging from 24% to 78% were analysed. The long-range alignment of pore channels produced during directional freezing is shown to be beneficial in forming a highly polarised structure and high d33 ∼ 264 pC N−1 after breakdown of air within the pore channels during corona poling. This new approach opens a way to create tailored pore structures and voids in ferroelectret materials for transducer applications related to sensors and vibration energy harvesting.
Original languageEnglish
Pages (from-to)825-832
Number of pages8
JournalSoft Matter
Volume15
Issue number5
Early online date7 Dec 2018
DOIs
Publication statusPublished - 7 Feb 2019

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Ice-templated poly(vinylidene fluoride) ferroelectrets'. Together they form a unique fingerprint.

Cite this