Hydrogen Bonding versus Entropy: Revealing the Underlying Thermodynamics of the Hybrid Organic–Inorganic Perovskite [CH3NH3]PbBr3

Gregor Kieslich, Jonathan Skelton, Jeff Armstrong, Yue Wu, Fengxia Wei, Katrine Svane, Aron Walsh, Keith Butler

Research output: Contribution to journalArticle

6 Citations (Scopus)


The enormous research efforts dedicated to hybrid organic–inorganic perovskites have led to a deep understanding of these materials; however, the role of entropy and its ramifications for the properties of the materials have been only sparsely explored. In this study, we quantify the phase transition mechanism in the hybrid organic–inorganic perovskite [CH3NH3]PbBr3 by studying low-energy collective phonon modes using a combination of inelastic neutron scattering and ab initio lattice dynamics. We demonstrate that a delicate interplay among hydrogen bonding interactions, lattice vibrational entropy, and configurational disorder determines the thermodynamics and results in the rich phase evolution of [CH3NH3]PbBr3 as a function of temperature. Our results have important implications for the manipulation of macroscopic properties and provide a blueprint for future studies that will focus on unravelling phase transition mechanisms in hybrid perovskites and related materials such as dense and porous coordination polymers.
Original languageEnglish
Pages (from-to)8782-8788
Number of pages7
JournalChemistry of Materials
Issue number24
Publication statusPublished - 26 Dec 2018

ASJC Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering(all)
  • Materials Chemistry


  • Cite this