Hydrogen-Bond Acceptor Properties of Nitro-O Atoms: A Combined Crystallographic Database and Ab Initio Molecular Orbital Study

Frank H. Allen, Christine A. Baalham, Jos P.M. Lommerse, Paul R. Raithby, Emma Sparr

Research output: Contribution to journalArticlepeer-review

72 Citations (SciVal)

Abstract

Crystallographic data for 620 C - nitro-O⋯H - N,O hydrogen bonds, involving 560 unique H atoms, have been investigated to the van der Waals limit of 2.62 Å. The overall mean nitro-O⋯H bond length is 2.30 (1) Å, which is much longer (weaker) than comparable hydrogen bonds involving >C=O acceptors in ketones, carboxylic acids and amides. The donor hydrogen prefers to approach the nitro-O atoms in the C - NO2 plane and there is an approximate 3:2 preference for hydrogen approach between the two nitro-O atoms, rather than between the C and O substituents. However, hydrogen approach between the two O acceptors is usually strongly asymmetric, the H atom being more closely associated with one of the O atoms: only 60 H atoms have both O⋯H distances ≤ 2.62 Å. The approach of hydrogen along putative O-atom lone-pair directions is clearly observed. Ab-initio-based molecular orbital calculations (6-31G** basis set level), using intermolecular perturbation theory (IMPT) applied to the nitromethane-methanol model dimer, agree with the experimental observations. IMPT calculations yield an attractive hydrogen-bond energy of ca -15 kJ mol-1, about half as strong as the >C=O⋯H bonds noted above.

Original languageEnglish
Pages (from-to)1017-1024
Number of pages8
JournalActa Crystallographica Section B: Structural Science
Volume53
Issue number6
DOIs
Publication statusPublished - 1 Dec 1997

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Hydrogen-Bond Acceptor Properties of Nitro-O Atoms: A Combined Crystallographic Database and Ab Initio Molecular Orbital Study'. Together they form a unique fingerprint.

Cite this