Projects per year
Abstract
Core–shell nanostructures are predicted to highly improve the efficiency of deep-UV light emitting diodes (LEDs), owing to their low defect density, reduced quantum-confined Stark effect, high-quality non-polar growth and improved extraction efficiency. In this paper, we report on the nanofabrication of high-quality AlN nanorod arrays using a hybrid top-down/bottom-up approach for use as a scaffold for UV LED structures. We describe the use of Displacement Talbot Lithography to fabricate a metallic hard etch mask to allow AlN nanorod arrays to be dry etched from a planar AlN template. In particular, we investigate the impact of etching parameters on the nanorod etch rate, tapering profile and mask selectivity in order to achieve vertical-sided nanorod arrays with high aspect ratios. AlN facet recovery is subsequently explored by means of regrowth using Metal Organic Vapor Phase Epitaxy. Low pressure and high V/III ratio promote straight and smooth sidewall faceting, which results in an improvement of the optical quality compared to the initial AlN template. The promising results open new perspectives for the fabrication of high-efficiency deep-UV-emitting core–shell LEDs.
Original language | English |
---|---|
Article number | 1700445 |
Number of pages | 9 |
Journal | Physica Status Solidi (B) |
Volume | 255 |
Issue number | 5 |
Early online date | 30 Nov 2017 |
DOIs | |
Publication status | Published - 1 May 2018 |
Fingerprint
Dive into the research topics of 'Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-shell LEDs'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Manufacturing of Nano-Engineered III-N Semiconductors
Shields, P. (PI), Allsopp, D. (CoI) & Wang, W. (CoI)
Engineering and Physical Sciences Research Council
1/05/15 → 30/09/21
Project: Research council
-
Manufacturing of Nano-Engineered III-N Semiconductors - Equipment
Shields, P. (PI) & Allsopp, D. (CoI)
Engineering and Physical Sciences Research Council
1/02/15 → 31/01/20
Project: Research council
Profiles
-
Philip Shields
- Department of Electronic & Electrical Engineering - Senior Lecturer
- Centre for Nanoscience and Nanotechnology
- Centre for Sustainable Chemical Technologies (CSCT)
- Condensed Matter Physics CDT
- Electronics Materials, Circuits & Systems Research Unit (EMaCS)
- Centre for Integrated Materials, Processes & Structures (IMPS)
Person: Research & Teaching, Core staff
Datasets
-
Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-shell LEDs: Dataset
Coulon, P.-M. (Creator), Kusch, G. (Creator), Le Boulbar, E. (Researcher), Chausse, P. (Contributor), Bryce, C. (Contributor), Martin, R. (Project Member) & Shields, P. (Project Leader), University of Bath, 2017
DOI: 10.15125/BATH-00415
Dataset