Hybrid Testing of an Aerial Refuelling Drogue

Mario Bolien

Research output: ThesisDoctoral Thesis

Abstract

Hybrid testing is an emerging technique for system emulation that uses a transfer system composed of actuators and sensors to couple physical tests of a critical component or substructure to a numerical simulation of the remainder of a system and its complete operating environment. The realisation of modern real-time hybrid tests for multi-body contact-impact problems often proves infeasible due to (i) hardware with bandwidth limitations and (ii) the unavailability of control schemes that provide satisfactory force and position tracking in the presence of sharp non-linearities or discontinuities. Where this is the case, the possibility of employing a pseudo-dynamic technique remains, enabling tests to be conducted on an enlarged time scale thus relaxing both
bandwidth and response time constraints and providing inherent loop stability. Exploiting the pseudo-dynamic technique, this thesis presents the development of Robotic Pseudo-Dynamic Testing (RPsDT), a dedicated method that specifically targets the realisation of hybrid tests for multi-body contact-impact problems using commercial off- the shelve (COTS) industrial robotic manipulators. The RPsDT method is evaluated in on-ground studies of air-to-air refuelling (AAR) maneuvers with probe-hose-drogue systems where the critical contact and coupling phase is tested pseudo-dynamically
with full-scale refuelling hardware while the flight regime is emulated in simulation. It is shown that the RPsDT method can faithfully reproduce the dominant contact impact phenomena between probe and drogue while minor discrepancies result from the absence of rate-dependant damping in the force feedback measurements. In combination with full-speed robot controlled contact tests, reliable estimates for impact forces, strain distributions and drogue responses to off-centre hits are obtained providing extensive improvements over current predictive capabilities for the in-flight behaviour of refuelling hardware and it is concluded that the technique shows great promise for industrial applications.
LanguageEnglish
QualificationPh.D.
Awarding Institution
  • University of Bath
Supervisors/Advisors
  • Du Bois, Jonathan, Supervisor
  • Iravani, Pejman, Supervisor
Thesis sponsors
Award date15 May 2018
StatusPublished - 11 Jan 2018

Fingerprint

Antennas
Robotics
Testing
Hardware
Air refueling
Bandwidth
Hose
Industrial applications
Manipulators
Actuators
Damping
Robots
Feedback
Sensors
Computer simulation
Air

Keywords

  • hybrid testing
  • Hardware in the loop
  • pseudo-dynamic testing
  • RPsDT
  • virtual validation
  • system verification
  • contact dynamics
  • Air-to-air refueling

Cite this

Hybrid Testing of an Aerial Refuelling Drogue. / Bolien, Mario.

2018. 158 p.

Research output: ThesisDoctoral Thesis

Bolien, M 2018, 'Hybrid Testing of an Aerial Refuelling Drogue', Ph.D., University of Bath.
Bolien, Mario. / Hybrid Testing of an Aerial Refuelling Drogue. 2018. 158 p.
@phdthesis{5be3aff0842e485c93e11c5aa404512b,
title = "Hybrid Testing of an Aerial Refuelling Drogue",
abstract = "Hybrid testing is an emerging technique for system emulation that uses a transfer system composed of actuators and sensors to couple physical tests of a critical component or substructure to a numerical simulation of the remainder of a system and its complete operating environment. The realisation of modern real-time hybrid tests for multi-body contact-impact problems often proves infeasible due to (i) hardware with bandwidth limitations and (ii) the unavailability of control schemes that provide satisfactory force and position tracking in the presence of sharp non-linearities or discontinuities. Where this is the case, the possibility of employing a pseudo-dynamic technique remains, enabling tests to be conducted on an enlarged time scale thus relaxing bothbandwidth and response time constraints and providing inherent loop stability. Exploiting the pseudo-dynamic technique, this thesis presents the development of Robotic Pseudo-Dynamic Testing (RPsDT), a dedicated method that specifically targets the realisation of hybrid tests for multi-body contact-impact problems using commercial off- the shelve (COTS) industrial robotic manipulators. The RPsDT method is evaluated in on-ground studies of air-to-air refuelling (AAR) maneuvers with probe-hose-drogue systems where the critical contact and coupling phase is tested pseudo-dynamicallywith full-scale refuelling hardware while the flight regime is emulated in simulation. It is shown that the RPsDT method can faithfully reproduce the dominant contact impact phenomena between probe and drogue while minor discrepancies result from the absence of rate-dependant damping in the force feedback measurements. In combination with full-speed robot controlled contact tests, reliable estimates for impact forces, strain distributions and drogue responses to off-centre hits are obtained providing extensive improvements over current predictive capabilities for the in-flight behaviour of refuelling hardware and it is concluded that the technique shows great promise for industrial applications.",
keywords = "hybrid testing, Hardware in the loop, pseudo-dynamic testing, RPsDT, virtual validation, system verification, contact dynamics, Air-to-air refueling",
author = "Mario Bolien",
year = "2018",
month = "1",
day = "11",
language = "English",
school = "University of Bath",

}

TY - THES

T1 - Hybrid Testing of an Aerial Refuelling Drogue

AU - Bolien,Mario

PY - 2018/1/11

Y1 - 2018/1/11

N2 - Hybrid testing is an emerging technique for system emulation that uses a transfer system composed of actuators and sensors to couple physical tests of a critical component or substructure to a numerical simulation of the remainder of a system and its complete operating environment. The realisation of modern real-time hybrid tests for multi-body contact-impact problems often proves infeasible due to (i) hardware with bandwidth limitations and (ii) the unavailability of control schemes that provide satisfactory force and position tracking in the presence of sharp non-linearities or discontinuities. Where this is the case, the possibility of employing a pseudo-dynamic technique remains, enabling tests to be conducted on an enlarged time scale thus relaxing bothbandwidth and response time constraints and providing inherent loop stability. Exploiting the pseudo-dynamic technique, this thesis presents the development of Robotic Pseudo-Dynamic Testing (RPsDT), a dedicated method that specifically targets the realisation of hybrid tests for multi-body contact-impact problems using commercial off- the shelve (COTS) industrial robotic manipulators. The RPsDT method is evaluated in on-ground studies of air-to-air refuelling (AAR) maneuvers with probe-hose-drogue systems where the critical contact and coupling phase is tested pseudo-dynamicallywith full-scale refuelling hardware while the flight regime is emulated in simulation. It is shown that the RPsDT method can faithfully reproduce the dominant contact impact phenomena between probe and drogue while minor discrepancies result from the absence of rate-dependant damping in the force feedback measurements. In combination with full-speed robot controlled contact tests, reliable estimates for impact forces, strain distributions and drogue responses to off-centre hits are obtained providing extensive improvements over current predictive capabilities for the in-flight behaviour of refuelling hardware and it is concluded that the technique shows great promise for industrial applications.

AB - Hybrid testing is an emerging technique for system emulation that uses a transfer system composed of actuators and sensors to couple physical tests of a critical component or substructure to a numerical simulation of the remainder of a system and its complete operating environment. The realisation of modern real-time hybrid tests for multi-body contact-impact problems often proves infeasible due to (i) hardware with bandwidth limitations and (ii) the unavailability of control schemes that provide satisfactory force and position tracking in the presence of sharp non-linearities or discontinuities. Where this is the case, the possibility of employing a pseudo-dynamic technique remains, enabling tests to be conducted on an enlarged time scale thus relaxing bothbandwidth and response time constraints and providing inherent loop stability. Exploiting the pseudo-dynamic technique, this thesis presents the development of Robotic Pseudo-Dynamic Testing (RPsDT), a dedicated method that specifically targets the realisation of hybrid tests for multi-body contact-impact problems using commercial off- the shelve (COTS) industrial robotic manipulators. The RPsDT method is evaluated in on-ground studies of air-to-air refuelling (AAR) maneuvers with probe-hose-drogue systems where the critical contact and coupling phase is tested pseudo-dynamicallywith full-scale refuelling hardware while the flight regime is emulated in simulation. It is shown that the RPsDT method can faithfully reproduce the dominant contact impact phenomena between probe and drogue while minor discrepancies result from the absence of rate-dependant damping in the force feedback measurements. In combination with full-speed robot controlled contact tests, reliable estimates for impact forces, strain distributions and drogue responses to off-centre hits are obtained providing extensive improvements over current predictive capabilities for the in-flight behaviour of refuelling hardware and it is concluded that the technique shows great promise for industrial applications.

KW - hybrid testing

KW - Hardware in the loop

KW - pseudo-dynamic testing

KW - RPsDT

KW - virtual validation

KW - system verification

KW - contact dynamics

KW - Air-to-air refueling

M3 - Doctoral Thesis

ER -