Abstract
To understand the public’s perception of COVID-19 tracing applications, previous studies were primarily based on exploratory research, surveys or machine learning methods, which are semantically weak and time-consuming. To increase the reliability of this analytical methodology, hybrid-based Twitter sentiment analysis can be applied. In this paper, we propose a hybrid model for sentiment analysis by using Valence Aware Dictionary for Sentiment Reasoning (VADER)+ Support Vector Machine (SVM). We demonstrate from the numerical analysis that a VADER and SVM-based hybrid model provides the best performance with 82.3% accuracy, 0.84 precision, 0.83 recall and 0.82 F1-score. The use of hybridbased methods is shown to be effective in analysing the public’s perception towards COVID-19 contact tracing applications using tweets collected from the UK, USA and India. Positive responses clearly outweighed negatives responses towards contact tracing, but this was contradicted by the low uptake of apps in all three nations. Our analysis, however, showed that neutral responses were 52% of the collected tweets; these tweets did not express positive or negative opinions, and subsequent tweets from the same users could not be verified, thus limiting the number of analyzed tweets available.
Original language | English |
---|---|
Title of host publication | 2023 IEEE World AI IoT Congress, AIIoT 2023 |
Editors | Satyajit Chakrabarti, Rajashree Paul |
Place of Publication | U. S. A. |
Publisher | IEEE |
Pages | 83-90 |
Number of pages | 8 |
ISBN (Electronic) | 9798350337617 |
ISBN (Print) | 9798350337624 |
DOIs | |
Publication status | Published - 10 Jun 2023 |
Event | 2023 IEEE World AI IoT Congress (AIIoT - Duration: 7 Jun 2023 → … |
Publication series
Name | 2023 IEEE World AI IoT Congress, AIIoT 2023 |
---|
Conference
Conference | 2023 IEEE World AI IoT Congress (AIIoT |
---|---|
Period | 7/06/23 → … |
Bibliographical note
Publisher Copyright:© 2023 IEEE.
Keywords
- COVID-19
- Global Health
- Lexicon and hybrid-based models
- Sentiment Analysis
ASJC Scopus subject areas
- Information Systems and Management
- Control and Optimization
- Artificial Intelligence
- Computer Networks and Communications
- Computer Science Applications