Horses damp the spring in their step

A M Wilson, M P McGuigan, A Su, A J van den Bogert

Research output: Contribution to journalArticlepeer-review

212 Citations (SciVal)

Abstract

The muscular work of galloping in horses is halved by storing and returning elastic strain energy in spring-like muscle-tendon units(1,2). These make the legs act like a child's pogo stick that is tuned to stretch and recoil at 2.5 strides per second. This mechanism is optimized by unique musculoskeletal adaptations: the digital flexor muscles have extremely short fibres and significant passive properties, whereas the tendons are very long and span several joints(3,4). Length change occurs by a stretching of the spring-like digital flexor tendons rather than through energetically expensive length changes in the muscle(5). Despite being apparently redundant for such a mechanism(5), the muscle fibres in the digital flexors are well developed. Here we show that the mechanical arrangement of the elastic leg permits it to vibrate at a higher frequency of 30-40 Hz that could cause fatigue damage to tendon and bone. Furthermore, we show that the digital flexor muscles have minimal ability to contribute to or regulate significantly the 2.5-Hz cycle of movement, but are ideally arranged to damp these high-frequency oscillations in the limb.
Original languageEnglish
Pages (from-to)895-899
Number of pages5
JournalNature
Volume414
Issue number6866
Publication statusPublished - 2001

Bibliographical note

ID number: ISI:000172813300042

Fingerprint

Dive into the research topics of 'Horses damp the spring in their step'. Together they form a unique fingerprint.

Cite this