Hitting distributions of α-stable processes via path censoring and self-similarity

Andreas Kyprianou, J. C. Pardo, Alexander Watson

Research output: Contribution to journalArticlepeer-review

27 Citations (SciVal)
134 Downloads (Pure)


In this paper we return to the problem of Blumenthal-Getoor-Ray, published in 1961, which gave the law of the position of first entry of a symmetric alpha-stable process into the unit ball. Specifically, we are interested in establishing the same law, but now for a one dimensional alpha-stable process which enjoys two-sided jumps, and which is not necessarily symmetric. Our method is modern in the sense that we appeal to the relationship between alpha-stable processes and certain positive self-similar Markov processes. However there are two notable additional innovations. First, we make use of a type of path censoring. Second, we are able to describe in explicit analytical detail a non-trivial Wiener-Hopf factorisation of an auxiliary Levy process from which the desired solution can be sourced. Moreover, as a consequence of this approach, we are able to deliver a number of additional, related identities in explicit form for alpha-stable processes.
Original languageEnglish
Pages (from-to)398-430
Number of pages33
JournalAnnals of Probability
Issue number1
Publication statusPublished - Jan 2014


Dive into the research topics of 'Hitting distributions of α-stable processes via path censoring and self-similarity'. Together they form a unique fingerprint.

Cite this