Projects per year
Abstract
MicroRNAs (miRNAs) play crucial regulatory roles in various human diseases including cancer, making them promising biomarkers. However, given the low levels of miRNAs present in blood, their use as cancer biomarkers requires the development of simple and effective analytical methods. Herein, we report the development of a highly sensitive dual mode electrochemical platform for the detection of microRNAs. The platform was developed using peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs. A simple amplification strategy using gold nanoparticles has been employed exploiting the inherit charges of the nucleic acids. Electrochemical impedance spectroscopy was used to monitor the changes in capacitance upon any binding event, without the need for any redox markers. By using thiolated ferrocene, a complementary detection mode on the same sensor was developed where the increasing peaks of ferrocene were recorded using square wave voltammetry with increasing miRNA concentration. This dual-mode allows detection of miRNA with a limit of detection of 0.37 fM and a wide dynamic range from 1 fM to 100 nM along with clear distinction from mismatched target miRNA sequences. The electrochemical platform developed can be easily expanded to other miRNA/DNA detection along with the development of microarray platforms.
Original language | English |
---|---|
Article number | 36719 (2016) |
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Scientific Reports |
Volume | 6 |
Early online date | 8 Nov 2016 |
DOIs | |
Publication status | Published - 8 Nov 2016 |
Fingerprint
Dive into the research topics of 'Highly sensitive dual mode electrochemical platform for microRNA detection'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Cancer Diagnosis: Parallel Sensing of Prostate Cancer Biomarkers: MARIE CURIE - PROSENSE Training budget
Estrela, P. (PI), Eggleston, I. (CoI), Frost, C. (CoI), Lloyd, M. (CoI), Pascu, S. (CoI) & Tyrrell, R. (CoI)
1/10/12 → 30/09/16
Project: EU Commission
Profiles
-
Pedro Estrela
- Department of Electronic & Electrical Engineering - Professor
- Centre for Bioengineering & Biomedical Technologies (CBio) - Centre Director
- Centre for Therapeutic Innovation
- Centre for Sustainable Chemical Technologies (CSCT)
- Water Innovation and Research Centre (WIRC)
- Centre for Nanoscience and Nanotechnology
- Institute of Sustainability and Climate Change
- Centre for Integrated Materials, Processes & Structures (IMPS)
- Centre for Regenerative Design & Engineering for a Net Positive World (RENEW)
- Bath Institute for the Augmented Human
- Centre of Excellence in Water-Based Early-Warning Systems for Health Protection (CWBE)
Person: Research & Teaching, Core staff, Affiliate staff
Equipment
-
MC2-Electron Microscopy (EM)
Material and Chemical Characterisation (MC2)Facility/equipment: Technology type