Abstract
CO2 methanation has gained traction for its potential in renewable energy storage, though the high cost of renewable hydrogen production remains a significant barrier to implementation. Herein we present the Ru‐Fe@NCNT catalyst, consisting of ruthenium and iron nanoparticles on nitrogen‐doped carbon nanotubes, as a highly selective, hydrogen efficient, iron‐driven alternative to typical nickel and ruthenium catalysts used for CO and CO2 methanation. Ru‐Fe@NCNTs offer competitive CO2 conversion, improved methane selectivity, 26% higher hydrogen utilisation and an up to 80% reduction in ruthenium loading versus similar literature and commercial catalysts. It is proposed that this desirable CO2 methanation performance is a result of effective cooperation between the iron‐catalysed reverse water gas shift and methane‐selective Fischer‐Tropsch, and ruthenium‐catalysed CO methanation reactions.
Original language | English |
---|---|
Pages (from-to) | 294-306 |
Number of pages | 13 |
Journal | Energy Technology |
Volume | 7 |
Issue number | 2 |
Early online date | 6 Nov 2018 |
DOIs | |
Publication status | Published - 1 Feb 2019 |
Fingerprint
Dive into the research topics of 'Highly selective, iron-driven CO2 methanation'. Together they form a unique fingerprint.Profiles
-
Davide Mattia
- Department of Chemical Engineering - Professor
- Institute of Sustainability and Climate Change
- Centre for Integrated Materials, Processes & Structures (IMPS)
Person: Research & Teaching, Core staff, Affiliate staff