High-resolution sweep metagenomics using fast probabilistic inference

Tommi Mäklin, Teemu Kallonen, Sophia David, Christine J. Boinett, Ben Pascoe, Guillaume Méric, David M. Aanensen, Edward J. Feil, Stephen Baker, Julian Parkhill, Samuel K. Sheppard, Jukka Corander, Antti Honkela

Research output: Contribution to journalArticlepeer-review


Determining the composition of bacterial communities beyond the level of a genus or species is challenging because of the considerable overlap between genomes representing close relatives. Here, we present the mSWEEP pipeline for identifying and estimating the relative sequence abundances of bacterial lineages from plate sweeps of enrichment cultures. mSWEEP leverages biologically grouped sequence assembly databases, applying probabilistic modelling, and provides controls for false positive results. Using sequencing data from major pathogens, we demonstrate significant improvements in lineage quantification and detection accuracy. Our pipeline facilitates investigating cultures comprising mixtures of bacteria, and opens up a new field of plate sweep metagenomics.
Original languageEnglish
Pages (from-to)14
JournalWellcome Open Research
Publication statusE-pub ahead of print - 30 Jan 2020

Fingerprint Dive into the research topics of 'High-resolution sweep metagenomics using fast probabilistic inference'. Together they form a unique fingerprint.

Cite this