High-performance perovskite solar cells fabricated by a hybrid physical-chemical vapor deposition

Xiangyang Wei, Y. Peng, Gaoshan Jing, T. Simon, T. Cui

Research output: Contribution to journalArticlepeer-review

3 Citations (SciVal)

Abstract

For the first time, we used a hybrid physical–chemical vapor deposition (HPCVD) method to fabricate perovskite solar cells (PSCs) based on perovskite films with both organic cations and halogen anions. A high power conversion efficiency (PCE) of 18.1% was achieved based on a mixed perovskite film of MAxFA1−xPb (IyBr1−y)3 and the efficiency of the PSCs with MAPbI3 and MAxFA1−xPbI3 films were 14.5% and 16.4%, respectively. Perovskite material components and bandgaps were precisely tuned to achieve high photoelectric conversion performance. Three different types of perovskite films employed include MAPbI3, MAxFA1−xPbI3, and MAxFA1−xPb (IyBr1−y)3 (which are also designated as MAPbI3, MA0.89FA0.11PbI3, and MA0.54FA0.46Pb (I0.94Br0.06)3 with the respective bandgaps of 1.60 eV, 1.58 eV, and 1.61 eV. The experimental results demonstrate the ability to fabricate both organic cation and halogen anion mixed perovskite films by the HPCVD method and achieve easily adjustable bandgaps. In addition, the perovskite films fabricated by HPCVD have superior surface morphology, large crystal size, and low surface roughness. Eventually, this vapor-based method will have great potential in the fabrication of large-area and flexible PSCs to promote commercial application and industrialization of future PSCs.
Original languageEnglish
JournalJournal of Solar Energy Engineering
DOIs
Publication statusPublished - 12 Jan 2021

Fingerprint

Dive into the research topics of 'High-performance perovskite solar cells fabricated by a hybrid physical-chemical vapor deposition'. Together they form a unique fingerprint.

Cite this