Habitat structure and population persistence in an experimental community

S P Ellner, E McCauley, B E Kendall, C J Briggs, P R Hosseini, S N Wood, A Janssen, M W Sabelis, P Turchin, R M Nisbet, W W Murdoch

Research output: Contribution to journalArticlepeer-review

182 Citations (SciVal)


Understanding spatial population dynamics is fundamental for many questions in ecology and conservation(1-4). Many theoretical mechanisms have been proposed whereby spatial structure can promote population persistence, in particular for exploiter-victim systems (host-parasite/pathogen, predator-prey) whose interactions are inherently oscillatory and therefore prone to extinction of local populations(5-11). Experiments have confirmed that spatial structure can extend persistence(11-16), but it has rarely been possible to identify the specific mechanisms involved. Here we use a model-based approach to identify the effects of spatial population processes in experimental systems of bean plants (Phaseolus lunatus), herbivorous mites (Tetranychus urticae) and predatory mites (Phytoseiulus persimilis). On isolated plants, and in a spatially undivided experimental system of 90 plants, prey and predator populations collapsed; however, introducing habitat structure allowed long-term persistence. Using mechanistic models, we determine that spatial population structure did not contribute to persistence, and spatially explicit models are not needed. Rather, habitat structure reduced the success of predators at locating prey outbreaks, allowing between-plant asynchrony of local population cycles due to random colonization events
Original languageEnglish
Pages (from-to)538--543
Number of pages6
Publication statusPublished - Aug 2001


Dive into the research topics of 'Habitat structure and population persistence in an experimental community'. Together they form a unique fingerprint.

Cite this