Green's function and infinite-time bubbling in the critical nonlinear heat equation

Carmen Cortazar, Monica Musso, Manuel Del Pino

Research output: Contribution to journalArticle

1 Downloads (Pure)

Abstract

Let Ω be a smooth bounded domain in Rn, n≥5. We consider the classical semilinear heat equation at the critical Sobolev exponent
Original languageEnglish
Pages (from-to)1-62
Number of pages62
JournalJournal of the European Mathematical Society
Early online date1 Oct 2019
DOIs
Publication statusE-pub ahead of print - 1 Oct 2019

Cite this

@article{a30c0bc9242048c78683fd2dc421b99b,
title = "Green's function and infinite-time bubbling in the critical nonlinear heat equation",
abstract = "Let Ω be a smooth bounded domain in Rn, n≥5. We consider the classical semilinear heat equation at the critical Sobolev exponent",
author = "Carmen Cortazar and Monica Musso and {Del Pino}, Manuel",
year = "2019",
month = "10",
day = "1",
doi = "10.4171/JEMS/922",
language = "English",
pages = "1--62",
journal = "Journal of the European Mathematical Society",
issn = "1435-9855",
publisher = "European Mathematical Society Publishing House",

}

TY - JOUR

T1 - Green's function and infinite-time bubbling in the critical nonlinear heat equation

AU - Cortazar, Carmen

AU - Musso, Monica

AU - Del Pino, Manuel

PY - 2019/10/1

Y1 - 2019/10/1

N2 - Let Ω be a smooth bounded domain in Rn, n≥5. We consider the classical semilinear heat equation at the critical Sobolev exponent

AB - Let Ω be a smooth bounded domain in Rn, n≥5. We consider the classical semilinear heat equation at the critical Sobolev exponent

U2 - 10.4171/JEMS/922

DO - 10.4171/JEMS/922

M3 - Article

SP - 1

EP - 62

JO - Journal of the European Mathematical Society

JF - Journal of the European Mathematical Society

SN - 1435-9855

ER -