TY - JOUR
T1 - GRB 081007 and GRB 090424
T2 - The surrounding medium, outflows, and supernovae
AU - Jin, Zhi Ping
AU - Covino, Stefano
AU - Della Valle, Massimo
AU - Ferrero, Patrizia
AU - Fugazza, Dino
AU - Malesani, Daniele
AU - Melandri, Andrea
AU - Pian, Elena
AU - Salvaterra, Ruben
AU - Bersier, David
AU - Campana, Sergio
AU - Cano, Zach
AU - Castro-Tirado, Alberto J.
AU - D'Avanzo, Paolo
AU - Fynbo, Johan P.U.
AU - Gomboc, Andreja
AU - Gorosabel, Javier
AU - Guidorzi, Cristiano
AU - Haislip, Joshua B.
AU - Hjorth, Jens
AU - Kobayashi, Shiho
AU - Lacluyze, Aaron P.
AU - Marconi, Gianni
AU - Mazzali, Paolo A.
AU - Mundell, Carole G.
AU - Piranomonte, Silvia
AU - Reichart, Daniel E.
AU - Sánchez-Ramírez, Rubén
AU - Smith, Robert J.
AU - Steele, Ian A.
AU - Tagliaferri, Gianpiero
AU - Tanvir, Nial R.
AU - Valenti, Stefano
AU - Vergani, Susanna D.
AU - Vestrand, Thomas
AU - Walker, Emma S.
AU - Woźniak, Przemek
PY - 2013/9/10
Y1 - 2013/9/10
N2 - We discuss the results of the analysis of multi-wavelength data for the afterglows of GRB 081007 and GRB 090424, two bursts detected by Swift. One of them, GRB 081007, also shows a spectroscopically confirmed supernova, SN 2008hw, which resembles SN 1998bw in its absorption features, while the maximum magnitude may be fainter, up to 0.7 mag, than observed in SN 1998bw. Bright optical flashes have been detected in both events, which allows us to derive solid constraints on the circumburst-matter density profile. This is particularly interesting in the case of GRB 081007, whose afterglow is found to be propagating into a constant-density medium, yielding yet another example of a gamma-ray burst (GRB) clearly associated with a massive-star progenitor which did not sculpt the surroundings with its stellar wind. There is no supernova component detected in the afterglow of GRB 090424, likely due to the brightness of the host galaxy, comparable to the Milky Way. We show that the afterglow data are consistent with the presence of both forward- and reverse-shock emission powered by relativistic outflows expanding into the interstellar medium. The absence of optical peaks due to the forward shock strongly suggests that the reverse-shock regions should be mildly magnetized. The initial Lorentz factor of outflow of GRB 081007 is estimated to be Γ ∼ 200, while for GRB 090424 a lower limit of Γ > 170 is derived. We also discuss the prompt emission of GRB 081007, which consists of just a single pulse. We argue that neither the external forward-shock model nor the shock-breakout model can account for the prompt emission data and suggest that the single-pulse-like prompt emission may be due to magnetic energy dissipation of a Poynting-flux-dominated outflow or to a dissipative photosphere.
AB - We discuss the results of the analysis of multi-wavelength data for the afterglows of GRB 081007 and GRB 090424, two bursts detected by Swift. One of them, GRB 081007, also shows a spectroscopically confirmed supernova, SN 2008hw, which resembles SN 1998bw in its absorption features, while the maximum magnitude may be fainter, up to 0.7 mag, than observed in SN 1998bw. Bright optical flashes have been detected in both events, which allows us to derive solid constraints on the circumburst-matter density profile. This is particularly interesting in the case of GRB 081007, whose afterglow is found to be propagating into a constant-density medium, yielding yet another example of a gamma-ray burst (GRB) clearly associated with a massive-star progenitor which did not sculpt the surroundings with its stellar wind. There is no supernova component detected in the afterglow of GRB 090424, likely due to the brightness of the host galaxy, comparable to the Milky Way. We show that the afterglow data are consistent with the presence of both forward- and reverse-shock emission powered by relativistic outflows expanding into the interstellar medium. The absence of optical peaks due to the forward shock strongly suggests that the reverse-shock regions should be mildly magnetized. The initial Lorentz factor of outflow of GRB 081007 is estimated to be Γ ∼ 200, while for GRB 090424 a lower limit of Γ > 170 is derived. We also discuss the prompt emission of GRB 081007, which consists of just a single pulse. We argue that neither the external forward-shock model nor the shock-breakout model can account for the prompt emission data and suggest that the single-pulse-like prompt emission may be due to magnetic energy dissipation of a Poynting-flux-dominated outflow or to a dissipative photosphere.
KW - gamma-ray: burst: individual (GRB 081007, GRB 090424)
KW - ISM: jets and outflows
KW - supernovae: individual (SN 2008hw)
UR - http://www.scopus.com/inward/record.url?scp=84883621010&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/774/2/114
DO - 10.1088/0004-637X/774/2/114
M3 - Article
AN - SCOPUS:84883621010
SN - 0004-637X
VL - 774
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 114
ER -