Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water

Isabella Poli, Ulrich Hintermair, Miriam Regue, Santosh Kumar, Emma V Sackville, Jenny Baker, Trystan M Watson, Salvador Eslava, Petra J Cameron

Research output: Contribution to journalArticlepeer-review

122 Citations (SciVal)
206 Downloads (Pure)

Abstract

Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr3-based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr3 as an inexpensive and efficient protection strategy. We achieve a record stability of 30 h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm-2 at 1.23 VRHE. We further demonstrate the versatility of our approach by grafting a molecular Ir-based water oxidation catalyst on the electrolyte-facing surface of the sealing graphite sheet, which cathodically shifts the onset potential of the composite photoanode due to accelerated charge transfer. These results suggest an efficient route to develop stable halide perovskite based electrodes for photoelectrochemical solar fuel generation.


This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665992 

Original languageEnglish
Article number2097
Number of pages10
JournalNature Communications
Volume10
Issue number1
Early online date8 May 2019
DOIs
Publication statusPublished - 8 May 2019

Fingerprint

Dive into the research topics of 'Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water'. Together they form a unique fingerprint.

Cite this