Projects per year
Abstract
Metal-halide perovskites have been widely investigated in the photovoltaic sector due to their promising optoelectronic properties and inexpensive fabrication techniques based on solution processing. Here we report the development of inorganic CsPbBr3-based photoanodes for direct photoelectrochemical oxygen evolution from aqueous electrolytes. We use a commercial thermal graphite sheet and a mesoporous carbon scaffold to encapsulate CsPbBr3 as an inexpensive and efficient protection strategy. We achieve a record stability of 30 h in aqueous electrolyte under constant simulated solar illumination, with currents above 2 mA cm-2 at 1.23 VRHE. We further demonstrate the versatility of our approach by grafting a molecular Ir-based water oxidation catalyst on the electrolyte-facing surface of the sealing graphite sheet, which cathodically shifts the onset potential of the composite photoanode due to accelerated charge transfer. These results suggest an efficient route to develop stable halide perovskite based electrodes for photoelectrochemical solar fuel generation.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665992
Original language | English |
---|---|
Article number | 2097 |
Number of pages | 10 |
Journal | Nature Communications |
Volume | 10 |
Issue number | 1 |
Early online date | 8 May 2019 |
DOIs | |
Publication status | Published - 8 May 2019 |
Fingerprint
Dive into the research topics of 'Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Halide perovskites for artificial leaves
Eslava, S. (PI)
Engineering and Physical Sciences Research Council
1/04/18 → 31/03/20
Project: Research council
Profiles
-
Petra Cameron
- Department of Chemistry - Professor
- Centre for Sustainable and Circular Technologies (CSCT)
- Institute of Sustainability and Climate Change
Person: Research & Teaching, Core staff
-
Ulrich Hintermair
- Department of Chemistry - Royal Society University Research Fellow & Reader
- Centre for Sustainable and Circular Technologies (CSCT)
- Made Smarter Innovation: Centre for People-Led Digitalisation
- Institute of Sustainability and Climate Change
Person: Research & Teaching, Core staff, Researcher
Datasets
-
Dataset for "Graphite-protected CsPbBr3 Perovskite Photoanodes Functionalised With Water Oxidation Catalyst for Oxygen Evolution in Water"
Poli, I. (Creator), Cameron, P. (Creator), Hintermair, U. (Data Collector), Regue Grino, M. (Data Collector), Kumar, S. (Data Collector), Sackville, E. (Data Collector), Baker, J. (Contributor), Watson, T. (Contributor) & Eslava, S. (Supervisor), University of Bath, 8 May 2019
DOI: 10.15125/BATH-00581
Dataset