Abstract
Electronic textiles (e-textiles) are about to face tremendous environmental and resource challenges due to the complexity of sorting, the risk to supplies and metal contamination in textile recycling streams. This is because e-textiles are heavily based on the integration of valuable metals, including gold, silver and copper. In the context of exploring sustainable materials in e-textiles, we tested the boundaries of chemical vapour deposition (CVD) grown multi-layer (ML) graphene in wearable communication applications, in which metal assemblies are leading the way in wearable communication. This study attempts to create a soft, textile-based communication interface that does not disrupt tactile comfort and conformity by introducing ML graphene sheets. The antenna design proposed is based on a multidisciplinary approach that merges electromagnetic engineering and material science and integrates graphene, a long-lasting alternative to metal components. The designed antenna covers a wide bandwidth ranging from 3 GHz to 9 GHz, which is a promising solution for a high data rate and efficient communication link. We also described the effects of bending and proximity to the human body on the antenna's overall performance.
Original language | English |
---|---|
Article number | 100727 |
Journal | Applied Materials Today |
Volume | 20 |
DOIs | |
Publication status | Published - Sept 2020 |
Keywords
- Chemical vapour deposition
- E-textiles
- Graphene
- Ultra-wideband communication
- Wearable antenna
ASJC Scopus subject areas
- General Materials Science