Abstract
We discuss a special form of gradient descent that in the literature has become known as the so-called linearised Bregman iteration. The idea is to replace the classical (squared) two norm metric in the gradient descent setting with a generalised Bregman distance, based on a more general proper, convex and lower semi-continuous functional. Gradient descent as well as the entropic mirror descent by Nemirovsky and Yudin are special cases, as is a specific form of non-linear Landweber iteration introduced by Bachmayr and Burger. We are going to analyse the linearised Bregman iteration in a setting where the functional we want to minimise is neither necessarily Lipschitz-continuous (in the classical sense) nor necessarily convex, and establish a global convergence result under the additional assumption that the functional we wish to minimise satisfies the so-called Kurdyka-Łojasiewicz property.
Original language | English |
---|---|
Title of host publication | MI Lecture Notes series of Kyushu University |
Editors | G. Reinout W. Quispel, Philipp Bader, McLaren David I., Daisuke Tagami |
Pages | 40-45 |
Number of pages | 5 |
Volume | 74 |
Publication status | Published - 31 Mar 2017 |
Keywords
- math.OC
- 49M37, 65K05, 65K10, 90C26, 90C30
- G.1.0; G.1.6