Projects per year
Abstract
Microorganisms sense environmental fluctuations in nutrients and light, coordinating their growth and development accordingly. Despite their critical roles in fungi, only a few G-protein coupled receptors (GPCRs) have been characterized. The Aspergillus nidulans genome encodes 86 putative GPCRs. Here, we characterise a carbon starvation-induced GPCR-mediated glucose sensing mechanism in A. nidulans. This includes two class V (gprH and gprI) and one class VII (gprM) GPCRs, which in response to glucose promote cAMP signalling, germination and hyphal growth, while negatively regulating sexual development in a light-dependent manner. We demonstrate that GprH regulates sexual development via influencing VeA activity, a key light-dependent regulator of fungal morphogenesis and secondary metabolism. We show that GprH and GprM are light-independent negative regulators of sterigmatocystin biosynthesis. Additionally, we reveal the epistatic interactions between the three GPCRs in regulating sexual development and sterigmatocystin production. In conclusion, GprH, GprM and GprI constitute a novel carbon starvation-induced glucose sensing mechanism that functions upstream of cAMP-PKA signalling to regulate fungal development and mycotoxin production.
Original language | English |
---|---|
Article number | e1008419 |
Pages (from-to) | 1-27 |
Number of pages | 27 |
Journal | Plos Genetics |
Volume | 15 |
Issue number | 10 |
DOIs | |
Publication status | Published - 14 Oct 2019 |
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Molecular Biology
- Genetics
- Genetics(clinical)
- Cancer Research
Fingerprint
Dive into the research topics of 'GPCR-mediated glucose sensing system regulates light-dependent fungal development and mycotoxin production'. Together they form a unique fingerprint.Projects
- 1 Finished