GNSS in Aviation: Ionospheric Threats at Low Latitudes

Research output: ThesisDoctoral Thesis

Abstract

Radio signals propagating through the ionised upper atmosphere (the ionosphere) in low latitude regions of the world can experience amplitude scintillation. This could threaten safety-critical applications of satellite navigation such as aviation. The research presented here studied the effects of amplitude scintillation on a Septentrio PolaRxS geodetic receiver and a Garmin 480 aviation receiver by means of a Spirent GNSS constellation simulator.
Different types of fade profiles showed that an abrupt drop in signal strength caused a loss of lock on the signal more often than a profile with a slow, gradual fade. A performance comparison of the two receivers demonstrated that the aviation receiver was more vulnerable than the geodetic receiver. An unexpected loss of lock at a specific fade duration and depth was seen with the Garmin receiver and was not explained. A single fade with a long fade duration was more likely to cause a loss of signal lock compared to rapid multiple fades.
Scintillation on signals from low elevation satellites can significantly degrade the precision and integrity of the navigation solution in an aviation receiver; especially if the satellites are within the best geometrical set. RAIM was observed to be no longer available during the critical landing approach phase of the scenario, in the case when all satellites in view were affected by the scintillation-induced signal perturbations.
A technique was also developed to simulate L5 scintillation based on real scintillation events of L1, in the absence of real captured data for L5. This was done to enable future investigations on aviation receiver performance when both L1 and L5 frequencies experience scintillation. Analysis indicated that L5 signal can be more vulnerable to the scintillation compared to the L1 signal, which may have important implications for aviation safety.
LanguageEnglish
QualificationPh.D.
Awarding Institution
  • University of Bath
Supervisors/Advisors
  • Mitchell, Cathryn, Supervisor
  • Forte, Biagio, Supervisor
Thesis sponsors
Award date21 Mar 2018
StatusPublished - 5 Oct 2017

Fingerprint

Scintillation
Aviation
Satellites
Navigation
Upper atmosphere
Ionosphere
Landing
Simulators

Keywords

  • scintillation
  • Aviation
  • Equatorial ionosphere
  • GNSS

Cite this

GNSS in Aviation: Ionospheric Threats at Low Latitudes. / Mohd Ali, Aiffah.

2017. 134 p.

Research output: ThesisDoctoral Thesis

@phdthesis{aaf90d5b18854633a22d410a05dff891,
title = "GNSS in Aviation: Ionospheric Threats at Low Latitudes",
abstract = "Radio signals propagating through the ionised upper atmosphere (the ionosphere) in low latitude regions of the world can experience amplitude scintillation. This could threaten safety-critical applications of satellite navigation such as aviation. The research presented here studied the effects of amplitude scintillation on a Septentrio PolaRxS geodetic receiver and a Garmin 480 aviation receiver by means of a Spirent GNSS constellation simulator.Different types of fade profiles showed that an abrupt drop in signal strength caused a loss of lock on the signal more often than a profile with a slow, gradual fade. A performance comparison of the two receivers demonstrated that the aviation receiver was more vulnerable than the geodetic receiver. An unexpected loss of lock at a specific fade duration and depth was seen with the Garmin receiver and was not explained. A single fade with a long fade duration was more likely to cause a loss of signal lock compared to rapid multiple fades.Scintillation on signals from low elevation satellites can significantly degrade the precision and integrity of the navigation solution in an aviation receiver; especially if the satellites are within the best geometrical set. RAIM was observed to be no longer available during the critical landing approach phase of the scenario, in the case when all satellites in view were affected by the scintillation-induced signal perturbations.A technique was also developed to simulate L5 scintillation based on real scintillation events of L1, in the absence of real captured data for L5. This was done to enable future investigations on aviation receiver performance when both L1 and L5 frequencies experience scintillation. Analysis indicated that L5 signal can be more vulnerable to the scintillation compared to the L1 signal, which may have important implications for aviation safety.",
keywords = "scintillation, Aviation, Equatorial ionosphere, GNSS",
author = "{Mohd Ali}, Aiffah",
year = "2017",
month = "10",
day = "5",
language = "English",
school = "University of Bath",

}

TY - THES

T1 - GNSS in Aviation: Ionospheric Threats at Low Latitudes

AU - Mohd Ali,Aiffah

PY - 2017/10/5

Y1 - 2017/10/5

N2 - Radio signals propagating through the ionised upper atmosphere (the ionosphere) in low latitude regions of the world can experience amplitude scintillation. This could threaten safety-critical applications of satellite navigation such as aviation. The research presented here studied the effects of amplitude scintillation on a Septentrio PolaRxS geodetic receiver and a Garmin 480 aviation receiver by means of a Spirent GNSS constellation simulator.Different types of fade profiles showed that an abrupt drop in signal strength caused a loss of lock on the signal more often than a profile with a slow, gradual fade. A performance comparison of the two receivers demonstrated that the aviation receiver was more vulnerable than the geodetic receiver. An unexpected loss of lock at a specific fade duration and depth was seen with the Garmin receiver and was not explained. A single fade with a long fade duration was more likely to cause a loss of signal lock compared to rapid multiple fades.Scintillation on signals from low elevation satellites can significantly degrade the precision and integrity of the navigation solution in an aviation receiver; especially if the satellites are within the best geometrical set. RAIM was observed to be no longer available during the critical landing approach phase of the scenario, in the case when all satellites in view were affected by the scintillation-induced signal perturbations.A technique was also developed to simulate L5 scintillation based on real scintillation events of L1, in the absence of real captured data for L5. This was done to enable future investigations on aviation receiver performance when both L1 and L5 frequencies experience scintillation. Analysis indicated that L5 signal can be more vulnerable to the scintillation compared to the L1 signal, which may have important implications for aviation safety.

AB - Radio signals propagating through the ionised upper atmosphere (the ionosphere) in low latitude regions of the world can experience amplitude scintillation. This could threaten safety-critical applications of satellite navigation such as aviation. The research presented here studied the effects of amplitude scintillation on a Septentrio PolaRxS geodetic receiver and a Garmin 480 aviation receiver by means of a Spirent GNSS constellation simulator.Different types of fade profiles showed that an abrupt drop in signal strength caused a loss of lock on the signal more often than a profile with a slow, gradual fade. A performance comparison of the two receivers demonstrated that the aviation receiver was more vulnerable than the geodetic receiver. An unexpected loss of lock at a specific fade duration and depth was seen with the Garmin receiver and was not explained. A single fade with a long fade duration was more likely to cause a loss of signal lock compared to rapid multiple fades.Scintillation on signals from low elevation satellites can significantly degrade the precision and integrity of the navigation solution in an aviation receiver; especially if the satellites are within the best geometrical set. RAIM was observed to be no longer available during the critical landing approach phase of the scenario, in the case when all satellites in view were affected by the scintillation-induced signal perturbations.A technique was also developed to simulate L5 scintillation based on real scintillation events of L1, in the absence of real captured data for L5. This was done to enable future investigations on aviation receiver performance when both L1 and L5 frequencies experience scintillation. Analysis indicated that L5 signal can be more vulnerable to the scintillation compared to the L1 signal, which may have important implications for aviation safety.

KW - scintillation

KW - Aviation

KW - Equatorial ionosphere

KW - GNSS

M3 - Doctoral Thesis

ER -