Glacier surface motion computation from digital image sequences

Research output: Contribution to journalArticlepeer-review

47 Citations (SciVal)
257 Downloads (Pure)

Abstract

A technique for computing the field of short-term glacier surface motion on a local scale is presented. Time-lapsed image negatives, digitized to a high resolution, provide the raw data for the three-stage technique. First, cross-correlation is used to establish a number of candidate displacement vectors for a series of regularly spaced templates. A relaxation-labeling routine is then applied to select the most appropriate candidate vectors, according to the local flow. Novel aspects of the relaxation algorithm include a new, efficient form of the support function and the absence of a null-match category. A new development is the application of a post filter to the resultant flow field, providing suitable displacement vectors for templates that were originally unmatched and correcting vectors that are still inconsistent with the local flow. Results from an image sequence from New Zealand's Mount Cook National Park show the superiority of the technique over the maximum cross-correlation method and demonstrate the effectiveness of the post filter in improving correlation-relaxation labeling
Original languageEnglish
Pages (from-to)1064-1072
Number of pages9
JournalIEEE Transactions on Geoscience and Remote Sensing
Volume38
Issue number2
DOIs
Publication statusPublished - Mar 2000

Fingerprint

Dive into the research topics of 'Glacier surface motion computation from digital image sequences'. Together they form a unique fingerprint.

Cite this