Abstract
Background and aims. Despite the introduction of pneumococcal conjugate vaccines (PCVs), Streptococcus pneumoniae still remains an important cause of morbidity and mortality, especially among children under 5 years in sub-Saharan Africa. We sought to determine the distribution of serotypes, lineages and antimicrobial resistance of S. pneumoniae from carriage and disease among children presenting to health facilities, 5–6 years after the introduction of PCV10 in Ethiopia. Methods. Whole-genome sequencing (WGS) was performed on 103 S. pneumoniae (86 from nasopharyngeal swabs, 4 from blood and 13 from middle ear discharge) isolated from children aged <15 years at 3 healthcare facilities in Addis Ababa, Ethiopia, from September 2016 to August 2017. Using the WGS data, serotypes were predicted, isolates were assigned to clonal complexes, global pneumococcal sequence clusters (GPSCs) were inferred and screening for alleles and mutations that confer resistance to antibiotics was performed using multiple bioinformatic pipelines. Results. The 103 S. pneumoniae isolates were assigned to 38 serotypes (including nontypeable) and 46 different GPSCs. The most common serotype was serotype 19A. Common GPSCs were GPSC1 [14.6% (15/103), sequence type (ST) 320, serotype 19A], GPSC268 [8.7% (9/103), ST 6882 and novel STs; serotypes 16F, 11A and 35A] and GPSC10 [8.7% (9/103), STs 2013, 230 and 8804; serotype 19A]. The four invasive isolates were serotype 19A (n=2) and serotype 33C (n=2). Resistance to penicillin (>0.06 µg ml−1, CLSI meningitis cutoff) was predicted in 57% (59/103) of the isolates, and 43% (25/58) penicillin-binding protein allele combinations were predicted to be associated with penicillin resistance. Resistance mutations in folA (I100L) and/or folP (indel between fifty-sixth and sixty-seventh aa) were identified among 66% (68/103) of the isolates, whilst tetracycline (tetM) and macrolide (ermB and mefA) resistance genes were found in 46.6% (48/103), 20.4% (21/103) and 20.4% (21/103) of the isolates, respectively. Multidrug resistance (MDR) (≥3 antibiotic classes) was observed in 31.1% (32/103) of the isolates. GPSC1 and GPSC10 accounted for 46.8% (15/32) and 18.7% (6/32) of the overall MDR. Conclusion. Five to 6 years after the introduction of PCV10 in Ethiopia, the S. pneumoniae obtained from carriage and disease among paediatric patients showed diverse serotype and pneumococcal lineages. The most common serotype identified was 19A, expressed by the MDR lineages GPSC1 and GPSC10, which is not covered by PCV10 but is included in PCV13. Continued assessment of the impact of PCV on the population structure of S. pneumoniae in Ethiopia is warranted during and after PCV13 introduction.
Original language | English |
---|---|
Article number | 001376 |
Journal | Microbial Genomics |
Volume | 11 |
Issue number | 3 |
Early online date | 18 Mar 2025 |
DOIs | |
Publication status | Published - 18 Mar 2025 |
Bibliographical note
For the purposes of Open Access, the authors have applied a CC BY public copyright license to any Author Accepted Manuscript version arising from this submission.Acknowledgements
We would like to thank all members of the Global Pneumococcal Sequencing Consortium for their contributions to create this rich global dataset. We are also grateful for the technical support from Wellcome Sanger Institute Sequencing pipeline and Pathogen Informatics team.Funding
This study was co-funded by the Bill and Melinda Gates Foundation (grant code OPP1034556) and the Wellcome Sanger Institute (core Wellcome grants 098051 and 206194). A.A.N. has received the Robert Austrian Research Award from ISPPD.
Keywords
- Ethiopia
- GPSC1
- GPSC10
- PCV10
- serotype 19A
- Streptococcus pneumoniae
ASJC Scopus subject areas
- Epidemiology
- Microbiology
- Molecular Biology
- Genetics