Abstract
The TET enzymes convert methylcytosine to the newly discovered base hydroxymethylcytosine. While recent reports suggest that TETs may play a role in response to oxidative stress, this role remains uncertain, and results lack in vivo models. Here we show a global decrease of hydroxymethylcytosine in cells treated with buthionine sulfoximine, and in mice depleted for the major antioxidant enzymes GPx1 and 2. Furthermore, genome-wide profiling revealed differentially hydroxymethylated regions in coding genes, and intriguingly in microRNA genes, both involved in response to oxidative stress. These results thus suggest a profound effect of in vivo oxidative stress on the global hydroxymethylome.
Original language | English |
---|---|
Article number | 12714 |
Journal | Scientific Reports |
Volume | 5 |
DOIs | |
Publication status | Published - 4 Aug 2015 |
Bibliographical note
Funding Information:BD, JJ, CC, RD are supported by the Belgian FNRS. MD is supported by Innoviris. MB is supported by the Televie. FF is an FNRS ‘Senior Research Associate’. BD is an ‘FNRS Aspirant’. FF’s laboratory was funded by grants from the FNRS and Televie, the ‘Interuniversity Attraction Poles’ (IAP Phase VII no P7/03) and by the ‘Action de Recherche Concerté’ (AUWB-2010-2015 ULB-No 7). We thank Dr. F.F Chu for providing the GPx1/2 Dko and wt genomic DNA extracts.
Funding
BD, JJ, CC, RD are supported by the Belgian FNRS. MD is supported by Innoviris. MB is supported by the Televie. FF is an FNRS ‘Senior Research Associate’. BD is an ‘FNRS Aspirant’. FF’s laboratory was funded by grants from the FNRS and Televie, the ‘Interuniversity Attraction Poles’ (IAP Phase VII no P7/03) and by the ‘Action de Recherche Concerté’ (AUWB-2010-2015 ULB-No 7). We thank Dr. F.F Chu for providing the GPx1/2 Dko and wt genomic DNA extracts.
ASJC Scopus subject areas
- General