Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae

P X Kover, J B Wolf, B N Kunkel, J M Cheverud

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Plant pathogens can severely reduce host yield and fitness. Thus, investigating the genetic basis of plant response to pathogens is important to further understand plant–pathogen coevolution and to improve crop production. The interaction between Arabidopsis thaliana and Pseudomonas syringae is an important model for studying the genetic basis of plant–pathogen interactions. Studies in this model have led to the discovery of many genes that differentiate a resistant from a susceptible plant. However, little is known about the genetic basis of quantitative variation in response to P. syringae. In this study, we investigate the genetic basis of three aspects of A. thaliana's response to P. syringae: symptom severity, bacterial population size and fruit production using a quantitative trait loci (QTL) analysis. We found two QTL for symptom severity and two for fruit production (possible candidate genes for observed QTL are discussed). We also found significant two-locus epistatic effect on symptom severity and fruit production. Although bacterial population size and symptom severity were strongly phenotypically correlated, we did not detect any QTL for bacterial population size. Despite the detected genetic variation observed for susceptibility, we found only a weak overall relationship between susceptibility traits and fitness, suggesting that these traits may not respond to selection.
Original languageEnglish
Pages (from-to)507-517
Number of pages11
JournalHeredity
Volume94
Issue number5
Early online date16 Mar 2005
DOIs
Publication statusPublished - Mar 2005

Fingerprint

Pseudomonas syringae
Arabidopsis
Quantitative Trait Loci
Population Density
Infection
Fruit
Genetic Models
Genetic Association Studies

Cite this

Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae. / Kover, P X; Wolf, J B; Kunkel, B N; Cheverud, J M.

In: Heredity, Vol. 94, No. 5, 03.2005, p. 507-517.

Research output: Contribution to journalArticle

Kover, P X ; Wolf, J B ; Kunkel, B N ; Cheverud, J M. / Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae. In: Heredity. 2005 ; Vol. 94, No. 5. pp. 507-517.
@article{7670eeeda97d4e84a342a2eef78ab20e,
title = "Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae",
abstract = "Plant pathogens can severely reduce host yield and fitness. Thus, investigating the genetic basis of plant response to pathogens is important to further understand plant–pathogen coevolution and to improve crop production. The interaction between Arabidopsis thaliana and Pseudomonas syringae is an important model for studying the genetic basis of plant–pathogen interactions. Studies in this model have led to the discovery of many genes that differentiate a resistant from a susceptible plant. However, little is known about the genetic basis of quantitative variation in response to P. syringae. In this study, we investigate the genetic basis of three aspects of A. thaliana's response to P. syringae: symptom severity, bacterial population size and fruit production using a quantitative trait loci (QTL) analysis. We found two QTL for symptom severity and two for fruit production (possible candidate genes for observed QTL are discussed). We also found significant two-locus epistatic effect on symptom severity and fruit production. Although bacterial population size and symptom severity were strongly phenotypically correlated, we did not detect any QTL for bacterial population size. Despite the detected genetic variation observed for susceptibility, we found only a weak overall relationship between susceptibility traits and fitness, suggesting that these traits may not respond to selection.",
author = "Kover, {P X} and Wolf, {J B} and Kunkel, {B N} and Cheverud, {J M}",
year = "2005",
month = "3",
doi = "10.1038/sj.hdy.6800651",
language = "English",
volume = "94",
pages = "507--517",
journal = "Heredity",
issn = "0018-067X",
publisher = "Nature Research",
number = "5",

}

TY - JOUR

T1 - Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae

AU - Kover, P X

AU - Wolf, J B

AU - Kunkel, B N

AU - Cheverud, J M

PY - 2005/3

Y1 - 2005/3

N2 - Plant pathogens can severely reduce host yield and fitness. Thus, investigating the genetic basis of plant response to pathogens is important to further understand plant–pathogen coevolution and to improve crop production. The interaction between Arabidopsis thaliana and Pseudomonas syringae is an important model for studying the genetic basis of plant–pathogen interactions. Studies in this model have led to the discovery of many genes that differentiate a resistant from a susceptible plant. However, little is known about the genetic basis of quantitative variation in response to P. syringae. In this study, we investigate the genetic basis of three aspects of A. thaliana's response to P. syringae: symptom severity, bacterial population size and fruit production using a quantitative trait loci (QTL) analysis. We found two QTL for symptom severity and two for fruit production (possible candidate genes for observed QTL are discussed). We also found significant two-locus epistatic effect on symptom severity and fruit production. Although bacterial population size and symptom severity were strongly phenotypically correlated, we did not detect any QTL for bacterial population size. Despite the detected genetic variation observed for susceptibility, we found only a weak overall relationship between susceptibility traits and fitness, suggesting that these traits may not respond to selection.

AB - Plant pathogens can severely reduce host yield and fitness. Thus, investigating the genetic basis of plant response to pathogens is important to further understand plant–pathogen coevolution and to improve crop production. The interaction between Arabidopsis thaliana and Pseudomonas syringae is an important model for studying the genetic basis of plant–pathogen interactions. Studies in this model have led to the discovery of many genes that differentiate a resistant from a susceptible plant. However, little is known about the genetic basis of quantitative variation in response to P. syringae. In this study, we investigate the genetic basis of three aspects of A. thaliana's response to P. syringae: symptom severity, bacterial population size and fruit production using a quantitative trait loci (QTL) analysis. We found two QTL for symptom severity and two for fruit production (possible candidate genes for observed QTL are discussed). We also found significant two-locus epistatic effect on symptom severity and fruit production. Although bacterial population size and symptom severity were strongly phenotypically correlated, we did not detect any QTL for bacterial population size. Despite the detected genetic variation observed for susceptibility, we found only a weak overall relationship between susceptibility traits and fitness, suggesting that these traits may not respond to selection.

UR - http://dx.doi.org/10.1038/sj.hdy.6800651

U2 - 10.1038/sj.hdy.6800651

DO - 10.1038/sj.hdy.6800651

M3 - Article

VL - 94

SP - 507

EP - 517

JO - Heredity

JF - Heredity

SN - 0018-067X

IS - 5

ER -