TY - JOUR
T1 - Gene expression, synteny, and local similarity in human noncoding mutation rates
AU - Webster, Matthew T.
AU - Smith, Nick G. C.
AU - Lercher, Martin J.
AU - Ellegren, Hans
N1 - ID number: ISI:000224013100002
PY - 2004
Y1 - 2004
N2 - The human genome is organized with regard to many features such as isochores, Giemsa bands, clusters of genes with similar expression patterns, and contiguous regions with shared evolutionary histories (synteny blocks). In addition to these genomic features, it is clear that mutation rates also vary across the human genome. To address how mutation rates and genomic features are related, we analyzed substitution rates at three classes of putatively neutral noncoding sites (nongenic, intronic, and ancestral repeats) in similar to14 Mb of human-chimpanzee alignments covering human chromosome 7. Patterns of mutation rate variation inferred from substitution rate variation differ among the three site classes. In particular, we find that intronic mutation rates are strongly affected by the breadth of expression of the genes in which they reside, with broadly expressed genes exhibiting low mutation rates, probably as a consequence of the transcription-coupled repair process acting in the germ line. All site classes show significant local similarities in mutation rate at the megabase scale, and regional similarities in nongenic mutation rate covary with blocks of synteny between the human and mouse genomes, indicating that the evolutionary history of a genomic region is an important determinant of mutation rate.
AB - The human genome is organized with regard to many features such as isochores, Giemsa bands, clusters of genes with similar expression patterns, and contiguous regions with shared evolutionary histories (synteny blocks). In addition to these genomic features, it is clear that mutation rates also vary across the human genome. To address how mutation rates and genomic features are related, we analyzed substitution rates at three classes of putatively neutral noncoding sites (nongenic, intronic, and ancestral repeats) in similar to14 Mb of human-chimpanzee alignments covering human chromosome 7. Patterns of mutation rate variation inferred from substitution rate variation differ among the three site classes. In particular, we find that intronic mutation rates are strongly affected by the breadth of expression of the genes in which they reside, with broadly expressed genes exhibiting low mutation rates, probably as a consequence of the transcription-coupled repair process acting in the germ line. All site classes show significant local similarities in mutation rate at the megabase scale, and regional similarities in nongenic mutation rate covary with blocks of synteny between the human and mouse genomes, indicating that the evolutionary history of a genomic region is an important determinant of mutation rate.
UR - http://dx.doi.org/10.1093/molbev/msh181
U2 - 10.1093/molbev/msh181
DO - 10.1093/molbev/msh181
M3 - Article
SN - 0737-4038
VL - 21
SP - 1820
EP - 1830
JO - Molecular Biology and Evolution
JF - Molecular Biology and Evolution
IS - 10
ER -