Gelfand transforms of SO(3)-invariant schwartz functions on the free group N3,2

Véronique Fischer, Fulvio Ricci

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The spectrum of a Gelfand pair (K ⋉ N, ), where N is a nilpotent group, can be embedded in a Euclidean space. We prove that in general, the Schwartz functions on the spectrum are the Gelfand transforms of Schwartz K-invariant functions on N. We also show the converse in the case of the Gelfand pair (SO(3) ⋉ N3,2, SO(3)), where N3,2 is the free two-step nilpotent Lie group with three generators. This extends recent results for the Heisenberg group.

Original languageEnglish
Pages (from-to)2143-2168
Number of pages26
JournalAnnales de l'institut Fourier
Volume59
Issue number6
DOIs
Publication statusPublished - 1 Jan 2009

Fingerprint

Gelfand Pairs
Free Group
Transform
Nilpotent Lie Group
Invariant
Nilpotent Group
Heisenberg Group
Converse
Euclidean space
Generator

Keywords

  • Gelfand pair
  • Nilpotent lie group
  • Schwartz space

ASJC Scopus subject areas

  • Algebra and Number Theory
  • Geometry and Topology

Cite this

Gelfand transforms of SO(3)-invariant schwartz functions on the free group N3,2. / Fischer, Véronique; Ricci, Fulvio.

In: Annales de l'institut Fourier, Vol. 59, No. 6, 01.01.2009, p. 2143-2168.

Research output: Contribution to journalArticle

@article{a29f20a77ec0471d895694d14ae09f71,
title = "Gelfand transforms of SO(3)-invariant schwartz functions on the free group N3,2",
abstract = "The spectrum of a Gelfand pair (K ⋉ N, ), where N is a nilpotent group, can be embedded in a Euclidean space. We prove that in general, the Schwartz functions on the spectrum are the Gelfand transforms of Schwartz K-invariant functions on N. We also show the converse in the case of the Gelfand pair (SO(3) ⋉ N3,2, SO(3)), where N3,2 is the free two-step nilpotent Lie group with three generators. This extends recent results for the Heisenberg group.",
keywords = "Gelfand pair, Nilpotent lie group, Schwartz space",
author = "V{\'e}ronique Fischer and Fulvio Ricci",
year = "2009",
month = "1",
day = "1",
doi = "10.5802/aif.2486",
language = "English",
volume = "59",
pages = "2143--2168",
journal = "Annales de l'institut Fourier",
issn = "0373-0956",
publisher = "Association des Annales de l'Institut Fourier",
number = "6",

}

TY - JOUR

T1 - Gelfand transforms of SO(3)-invariant schwartz functions on the free group N3,2

AU - Fischer, Véronique

AU - Ricci, Fulvio

PY - 2009/1/1

Y1 - 2009/1/1

N2 - The spectrum of a Gelfand pair (K ⋉ N, ), where N is a nilpotent group, can be embedded in a Euclidean space. We prove that in general, the Schwartz functions on the spectrum are the Gelfand transforms of Schwartz K-invariant functions on N. We also show the converse in the case of the Gelfand pair (SO(3) ⋉ N3,2, SO(3)), where N3,2 is the free two-step nilpotent Lie group with three generators. This extends recent results for the Heisenberg group.

AB - The spectrum of a Gelfand pair (K ⋉ N, ), where N is a nilpotent group, can be embedded in a Euclidean space. We prove that in general, the Schwartz functions on the spectrum are the Gelfand transforms of Schwartz K-invariant functions on N. We also show the converse in the case of the Gelfand pair (SO(3) ⋉ N3,2, SO(3)), where N3,2 is the free two-step nilpotent Lie group with three generators. This extends recent results for the Heisenberg group.

KW - Gelfand pair

KW - Nilpotent lie group

KW - Schwartz space

UR - http://www.scopus.com/inward/record.url?scp=77749264193&partnerID=8YFLogxK

U2 - 10.5802/aif.2486

DO - 10.5802/aif.2486

M3 - Article

VL - 59

SP - 2143

EP - 2168

JO - Annales de l'institut Fourier

JF - Annales de l'institut Fourier

SN - 0373-0956

IS - 6

ER -