Galaxy kinematics and mass estimates at z ∼ 1 from ionised gas and stars

Hannah Ubler, Natascha M Förster Schreiber, Arjen van der Wel, Rachel Bezanson, Sedona H. Price, Francesco D’Eugenio, Emily Wisnioski, Reinhard Genzel, Linda J. Tacconi, Stijn Wuyts, Thorsten Naab, Dieter Lutz, Caroline M S Straatman, Thomas Taro Shimizu, Ric Davies, Daizhong Liu, J Trevor Mendel

Research output: Contribution to journalArticlepeer-review

1 Citation (SciVal)
223 Downloads (Pure)

Abstract

We compare ionised gas and stellar kinematics of 16 star-forming galaxies (log (M⋆/M⊙) = 9.7 − 11.2, SFR =6 − 86M⊙/yr) at z ∼ 1 using near-infrared integral field spectroscopy (IFS) of Hα emission from the KMOS3D survey and optical slit spectroscopy of stellar absorption and gas emission from the LEGA-C survey. Hα is dynamically colder than stars, with higher disc rotation velocities (by ∼45 per cent) and lower disc velocity dispersions (by a factor ∼2). This is similar to trends observed in the local Universe. We find higher rotational support for Hα relative to [OII], potentially explaining systematic offsets in kinematic scaling relations found in the literature. Regarding dynamical mass measurements, for six galaxies with cumulative mass profiles from Jeans Anisotropic Multi-Gaussian Expansion (JAM) models the Hα dynamical mass models agree remarkably well out to ∼10 kpc for all but one galaxy (average ΔΜdyn(Re, F814W) < 0.1 dex). Simpler dynamical mass estimates based on integrated stellar velocity dispersion are less accurate (standard deviation 0.24 dex). Differences in dynamical mass estimates are larger, for example, for galaxies with stronger misalignments of the Hα kinematic major axis and the photometric position angle, highlighting the added value of IFS observations for dynamics studies. The good agreement between the JAM models and the dynamical models based on Hα kinematics at z ∼ 1 corroborates the validity of dynamical mass measurements from Hα IFS observations, which can be more easily obtained for higher redshift galaxies.
Original languageEnglish
Pages (from-to)9206-9235
Number of pages29
JournalMonthly Notices of the Royal Astronomical Society
Volume527
Issue number3
Early online date12 Dec 2023
DOIs
Publication statusPublished - 31 Jan 2024

Fingerprint

Dive into the research topics of 'Galaxy kinematics and mass estimates at z ∼ 1 from ionised gas and stars'. Together they form a unique fingerprint.

Cite this