Projects per year
Abstract
Wearable sensors and motion capture technology are accepted instruments to measure spatiotemporal variables during punching performance and to study the externally observable effects of fatigue. This study aimed to develop a computational framework enabling three-dimensional inverse dynamics analysis through the tracking of punching kinematics obtained from inertial measurement units and uniplanar videography. The framework was applied to six elite male boxers performing a boxing-specific punch fatigue protocol. OpenPose was used to label left side upper-limb landmarks from which sagittal plane kinematics were computed. Custom-made inertial measurement units were embedded into the boxing gloves, and three-dimensional punch accelerations were analyzed using statistical parametric mapping to evaluate the effects of both fatigue and laterality. Tracking simulations of a sub-set of left-handed punches were formulated as optimal control problems and converted to nonlinear programming problems for solution with a trapezoid collocation method. The laterality analysis revealed the dominant side fatigued more than the non-dominant, while tracking simulations revealed shoulder abduction and elevation moments increased across the fatigue protocol. In future, such advanced simulation and analysis could be performed in ecologically valid contexts, whereby multiple inertial measurement units and video cameras might be used to model a more complete set of dynamics.
Original language | English |
---|---|
Article number | 5749 |
Journal | Sensors (Basel, Switzerland) |
Volume | 20 |
Issue number | 20 |
DOIs | |
Publication status | Published - 10 Oct 2020 |
Fingerprint
Dive into the research topics of 'Fusing Accelerometry with Videography to Monitor the Effect of Fatigue on Punching Performance in Elite Boxers'. Together they form a unique fingerprint.-
Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA) - 2.0
Campbell, N. (PI), Cosker, D. (PI), Bilzon, J. (CoI), Campbell, N. (CoI), Cazzola, D. (CoI), Colyer, S. (CoI), Cosker, D. (CoI), Lutteroth, C. (CoI), McGuigan, P. (CoI), O'Neill, E. (CoI), Petrini, K. (CoI), Proulx, M. (CoI) & Yang, Y. (CoI)
Engineering and Physical Sciences Research Council
1/11/20 → 31/10/25
Project: Research council
-
Centre for the Analysis of Motion, Entertainment Research and Applications (CAMERA)
Cosker, D. (PI), Bilzon, J. (CoI), Campbell, N. (CoI), Cazzola, D. (CoI), Colyer, S. (CoI), Fincham Haines, T. (CoI), Hall, P. (CoI), Kim, K. I. (CoI), Lutteroth, C. (CoI), McGuigan, P. (CoI), O'Neill, E. (CoI), Richardt, C. (CoI), Salo, A. (CoI), Seminati, E. (CoI), Tabor, A. (CoI) & Yang, Y. (CoI)
Engineering and Physical Sciences Research Council
1/09/15 → 28/02/21
Project: Research council
Profiles
-
Dario Cazzola
- Department for Health - Senior Lecturer
- Centre for the Analysis of Motion, Entertainment Research & Applications
- Centre for Health and Injury and Illness Prevention in Sport
- Bath Institute for the Augmented Human
- Centre for Bioengineering & Biomedical Technologies (CBio)
Person: Research & Teaching, Core staff, Affiliate staff