Abstract
Novel core-shell structured organophosphazene (OPZ) coated BaTiO3 nanoparticles (OPZ@BaTiO3) were produced via a facile and rapid one-step nucleophilic substitution reaction in ambient conditions. The morphology, structure and textural properties of the core-shell nanoparticles were analysed via electron microscopy, spectroscopy, thermogravimetry and porosimetry, and the dielectric properties were evaluated by impedance spectroscopy. The thickness of the cross-linked OPZ shell was readily tailored by varying the weight ratio of the OPZ monomers to BaTiO3, which in turn affected the relative permittivity and the frequency dependence of the OPZ/BaTiO3 particles. A subsequent carbonisation treatment of the OPZ@BaTiO3 at 700 °C transformed the polymeric OPZ shell to a microporous carbonaceous shell, which dramatically increased the electrical conductivity of the particles. Organophosphazene chemistry offers a facile route to functionalise BaTiO3 nanoparticles without any pre-treatment, and generate a range of core-shell BaTiO3 nanoparticles with tailored dielectric and electrically conductive properties that can be used as active fillers for polymer based nanocomposites and energy storage applications. The effectiveness and advantages of OPZ chemistry over other reported methods in forming core-shell particles are demonstrated.
Original language | English |
---|---|
Pages (from-to) | 19674-19683 |
Number of pages | 10 |
Journal | RSC Advances |
Volume | 7 |
Issue number | 32 |
Early online date | 3 Apr 2017 |
DOIs | |
Publication status | Published - 31 Dec 2017 |
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
Fingerprint
Dive into the research topics of 'Functionalization of BaTiO3 nanoparticles with electron insulating and conducting organophosphazene-based hybrid materials'. Together they form a unique fingerprint.Profiles
-
Chris Bowen
- Department of Mechanical Engineering - Professor
- Faculty of Engineering and Design - Associate Dean (Research)
- Centre for Sustainable Chemical Technologies (CSCT)
- Centre for Nanoscience and Nanotechnology
- Institute for Mathematical Innovation (IMI)
- Institute of Sustainability and Climate Change
- Centre for Integrated Materials, Processes & Structures (IMPS)
- IAAPS: Propulsion and Mobility
Person: Research & Teaching, Core staff, Affiliate staff
Equipment
-
Raman confocal microscope RENISHAM INVIA
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment