Four-Wave Mixing at Excitonic Resonances in the Telecom Spectral Range

Sebastian Klimmer, Artem Sinelnik, Thomas Pertsch, Isabelle Staude, Habib Rostami, Giancarlo Soavi

Research output: Chapter or section in a book/report/conference proceedingChapter in a published conference proceeding

Abstract

The generation of entangled photons by spontaneous parametric down-conversion (SPDC) or spontaneous four-wave mixing (SFWM) attracted enormous interest in the field of quantum optics. Depending on applications, entangled photon sources prioritize either bandwidth (e.g. for quantum imaging) or brightness (e.g. for quantum key distribution). Layered materials offer unique advantages for both. They have already been used to realize thinnest SPDC sources [1], which, like other layered materials such as transition-metal dichalcogenides (TMDs) [2], offer nearly unlimited bandwidth thanks to relaxed phase-matching constraints. Further, their easy integration on photonic platforms is promising for bright on-chip entangled photon sources. In this context, SPDC-based solutions are limited by phase-matching, whereas SFWM would be an almost phase-matching-free process, as pump, idler, and signal photons can be generated at similar wavelengths, thus propagating at the same group velocity in integrated devices. Moreover, exploiting excitonic resonances could enhance FWM even more. However, to date, experiments with resonant FWM in TMDs have been limited to signals in the visible [3], which is unsuitable for integrated photonics and telecom systems due to reabsorption during propagation in the photonic device.

Original languageEnglish
Title of host publication2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023
Place of PublicationU. S. A.
PublisherIEEE
ISBN (Electronic)9798350345995
ISBN (Print)9798350346008
DOIs
Publication statusPublished - 4 Sept 2023
Event2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 - Munich, Germany
Duration: 26 Jun 202330 Jun 2023

Publication series

Name2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023

Conference

Conference2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023
Country/TerritoryGermany
CityMunich
Period26/06/2330/06/23

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Four-Wave Mixing at Excitonic Resonances in the Telecom Spectral Range'. Together they form a unique fingerprint.

Cite this