Forecasting the novel coronavirus COVID-19

Fotios Petropoulos, Spyros Makridakis

Research output: Contribution to journalArticlepeer-review

396 Citations (SciVal)
178 Downloads (Pure)

Abstract

What will be the global impact of the novel coronavirus (COVID-19)? Answering this question requires accurate forecasting the spread of confirmed cases as well as analysis of the number of deaths and recoveries. Forecasting, however, requires ample historical data. At the same time, no prediction is certain as the future rarely repeats itself in the same way as the past. Moreover, forecasts are influenced by the reliability of the data, vested interests, and what variables are being predicted. Also, psychological factors play a significant role in how people perceive and react to the danger from the disease and the fear that it may affect them personally. This paper introduces an objective approach to predicting the continuation of the COVID-19 using a simple, but powerful method to do so. Assuming that the data used is reliable and that the future will continue to follow the past pattern of the disease, our forecasts suggest a continuing increase in the confirmed COVID-19 cases with sizable associated uncertainty. The risks are far from symmetric as underestimating its spread like a pandemic and not doing enough to contain it is much more severe than overspending and being over careful when it will not be needed. This paper describes the timeline of a live forecasting exercise with massive potential implications for planning and decision making and provides objective forecasts for the confirmed cases of COVID-19.
Original languageEnglish
Article numbere0231236
Number of pages8
JournalPLoS ONE
Volume15
Issue number3
DOIs
Publication statusPublished - 31 Mar 2020

ASJC Scopus subject areas

  • General Biochemistry,Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Forecasting the novel coronavirus COVID-19'. Together they form a unique fingerprint.

Cite this