Projects per year
Abstract
It is well-known that when the geometry and/or coefficients allow stable trapped rays, the outgoing solution operator of the Helmholtz equation grows exponentially through a sequence of real frequencies tending to infinity. In this paper we show that, even in the presence of the strongest possible trapping, if a set of frequencies of arbitrarily small measure is excluded, the Helmholtz solution operator grows at most polynomially as the frequency tends to infinity. One significant application of this result is in the convergence analysis of several numerical methods for solving the Helmholtz equation at high frequency that are based on a polynomial-growth assumption on the solution operator (e.g. hp-finite elements, hp-boundary elements, and certain multiscale methods). The result of this paper shows that this assumption holds, even in the presence of the strongest possible trapping, for most frequencies.
Original language | English |
---|---|
Pages (from-to) | 2025-2063 |
Number of pages | 39 |
Journal | Communications on Pure and Applied Mathematics |
Volume | 74 |
Issue number | 10 |
Early online date | 31 Jul 2020 |
DOIs | |
Publication status | Published - 1 Oct 2021 |
Bibliographical note
Publisher Copyright:© 2021 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics
Fingerprint
Dive into the research topics of 'For most frequencies, strong trapping has a weak effect in frequency-domain scattering'. Together they form a unique fingerprint.Projects
- 1 Finished
-
At the interface between semiclassical analysis and numerical analysis of Wave propogation problems
Spence, E. (PI)
Engineering and Physical Sciences Research Council
1/10/17 → 30/09/23
Project: Research council
Profiles
-
Euan Spence
- Department of Mathematical Sciences - Professor
- EPSRC Centre for Doctoral Training in Statistical Applied Mathematics (SAMBa)
Person: Research & Teaching