Finite element (FE) modelling of current density on the valve regulated lead/acid battery positive grid

Richard J Ball, R Evans, R Stevens

Research output: Contribution to journalArticlepeer-review

15 Citations (SciVal)

Abstract

During operation of the valve regulated lead/acid (VRLA) battery, a mixed stoichiometry lead oxide corrosion layer is formed on the surface of the positive electrode. The formation of this layer has a number of consequences including increased electrode resistance and decreased strength. Experimental results obtained from cycling 40Ah VRLA batteries revealed an increase in corrosion layer thickness on the sides of the grid bars compared to the top and bottom. It is suggested that the areas of increased corrosion layer thickness corresponded to the areas of high current density on the surface of the grid. In order to investigate this observation the finite element package ANSYS was used to produce qualitative estimates of the values in current density, which would be expected on the tested grid design. Results suggest that corrosion layer thickening is related to current density. The model was then used to predict the expected current distribution around a number of hypothetical electrode designs. These incorporated changes in both grid bar cross-section and positive active material. Results showed that improvements could be made to existing grid designs with respect to lowering current densities.
Original languageEnglish
Pages (from-to)213-222
Number of pages10
JournalJournal of Power Sources
Volume103
Issue number2
DOIs
Publication statusPublished - 2002

Fingerprint

Dive into the research topics of 'Finite element (FE) modelling of current density on the valve regulated lead/acid battery positive grid'. Together they form a unique fingerprint.

Cite this