Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods

Julia Charrier, Robert Scheichl, Aretha L Teckentrup

Research output: Contribution to journalArticle

80 Citations (Scopus)


We consider a finite element approximation of elliptic partial differential equations with random coefficients. Such equations arise, for example, in uncertainty quantification in subsurface flow modeling. Models for random coefficients frequently used in these applications, such as log-normal random fields with exponential covariance, have only very limited spatial regularity and lead to variational problems that lack uniform coercivity and boundedness with respect to the random parameter. In our analysis we overcome these challenges by a careful treatment of the model problem almost surely in the random parameter, which then enables us to prove uniform bounds on the finite element error in standard Bochner spaces. These new bounds can then be used to perform a rigorous analysis of the multilevel Monte Carlo method for these elliptic problems that lack full regularity and uniform coercivity and boundedness. To conclude, we give some numerical results that confirm the new bounds.
Original languageEnglish
Pages (from-to)322-352
Number of pages31
JournalSIAM Journal on Numerical Analysis (SINUM)
Issue number1
Early online date31 Jan 2013
Publication statusPublished - 2013


Cite this