Abstract
The agriculture industry has grown dramatically by about three times over the last 50 years due to the rapid population growth, improvements in green production technology and agricultural land development. Rice is the
second most-consumed agricultural product globally. The rice husk ash (RHA), attained by burning the husk that is removed in the process of rice production, possesses high pozzolanic activity and therefore is a promising supplementary cementitious material. Despite the numerous studies on the successful incorporation of RHA in concrete in the literature, a comprehensive assessment on the sustainability aspects of these practices has not yet been solely and exclusively addressed. The paper reports findings from the analysis of a large database on the RHA incorporation in concrete. Principal sustainability components such as CO2 emissions, cost efficiency and eco-strength efficiency are described. The database, comprising over 1000 data points has been utilized to assess the key factors that have significant influences on the mechanical properties of concrete comprising RHA using the established set of criteria. Independent determination of the boundary conditions played a vital role in the
sustainability assessment. The results showed that the use of RHA along with the other pozzolanic materials can yield a 25% diminution in the CO2 emissions generated during the concrete production in conjunction with a 65% rise in the cost efficiency of such practices. The findings reported in this study demonstrate improved sustainability for construction practice and highlight greener waste management routes that can be established for RHA.
second most-consumed agricultural product globally. The rice husk ash (RHA), attained by burning the husk that is removed in the process of rice production, possesses high pozzolanic activity and therefore is a promising supplementary cementitious material. Despite the numerous studies on the successful incorporation of RHA in concrete in the literature, a comprehensive assessment on the sustainability aspects of these practices has not yet been solely and exclusively addressed. The paper reports findings from the analysis of a large database on the RHA incorporation in concrete. Principal sustainability components such as CO2 emissions, cost efficiency and eco-strength efficiency are described. The database, comprising over 1000 data points has been utilized to assess the key factors that have significant influences on the mechanical properties of concrete comprising RHA using the established set of criteria. Independent determination of the boundary conditions played a vital role in the
sustainability assessment. The results showed that the use of RHA along with the other pozzolanic materials can yield a 25% diminution in the CO2 emissions generated during the concrete production in conjunction with a 65% rise in the cost efficiency of such practices. The findings reported in this study demonstrate improved sustainability for construction practice and highlight greener waste management routes that can be established for RHA.
Original language | English |
---|---|
Article number | 126905 |
Number of pages | 21 |
Journal | Construction and Building Materials |
Volume | 326 |
Early online date | 21 Feb 2022 |
DOIs | |
Publication status | Published - 4 Apr 2022 |
Keywords
- CO emissions and cost efficiency
- Cement
- Cleaner waste management alternative route
- Database
- Rice husk ash
- Waste utilisation
ASJC Scopus subject areas
- Civil and Structural Engineering
- Building and Construction
- General Materials Science