Projects per year
Abstract
λ-calculi come with no fixed evaluation strategy. Different strategies may then be considered, and it is important that they satisfy some abstract rewriting property, such as factorization or normalization theorems. In this paper we provide simple proof techniques for these theorems. Our starting point is a revisitation of Takahashi’s technique to prove factorization for head reduction. Our technique is both simpler and more powerful, as it works in cases where Takahashi’s does not. We then pair factorization with two other abstract properties, defining essential systems, and show that normalization follows. Concretely, we apply the technique to four case studies, two classic ones, head and the leftmost-outermost reductions, and two less classic ones, non-deterministic weak call-by-value and least-level reductions.
Original language | English |
---|---|
Title of host publication | APLAS 2019: Programming Languages and Systems |
Publisher | Springer Verlag |
Pages | 159–180 |
Number of pages | 22 |
ISBN (Electronic) | 9783030341756 |
ISBN (Print) | 9783030341749 |
DOIs | |
Publication status | Published - 31 Dec 2019 |
Publication series
Name | Lecture Notes in Computer Science |
---|---|
Volume | 11893 |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Fingerprint
Dive into the research topics of 'Factorization and Normalization, Essentially'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Typed Lambda-Calculi with Sharing and Unsharing
Heijltjes, W. (PI)
Engineering and Physical Sciences Research Council
1/01/19 → 30/07/22
Project: Research council