TY - JOUR
T1 - Experimental study and modelling of heat evolution of blended cements
AU - Paine, Kevin A
AU - Zheng, L
AU - Dhir, R K
PY - 2005
Y1 - 2005
N2 - The advisability of controlling the temperature rise and fall in concrete at early age is well recognised, and the choice of an appropriate, low-heat cement with suitable heat of hydration characteristics can assist in this control. This is particularly pertinent with respect to water-retaining and massive concrete structures where the need to prevent early-age thermal cracking is paramount. Portland cement/ground granulated blast furnace slag (PC/ggbs) or PC/fly ash cements are often used in these structures due to their low heat hydration properties. This paper presents the results of isothermal conduction calorimetry tests carried out on PC/ggbs and PC/fly ash cements and describes a model that uses these results to simulate the heat evolution processes in hydration concrete sections at early ages. The tests covered a range up to 90% ggbs and up to 65% fly ash content by mass of cement, at temperatures from 5° to 60°C. For PC/ggbs cements, the total heat of hydration can be considered as a composition of three components, that is heats from an initial Portland cement reaction, a latent ggbs hydraulic reaction and co-reactivity effects of PC and ggbs; whereas for PC/fly ash cements, the initial PC reaction dominated with a small co-reactivity effect
AB - The advisability of controlling the temperature rise and fall in concrete at early age is well recognised, and the choice of an appropriate, low-heat cement with suitable heat of hydration characteristics can assist in this control. This is particularly pertinent with respect to water-retaining and massive concrete structures where the need to prevent early-age thermal cracking is paramount. Portland cement/ground granulated blast furnace slag (PC/ggbs) or PC/fly ash cements are often used in these structures due to their low heat hydration properties. This paper presents the results of isothermal conduction calorimetry tests carried out on PC/ggbs and PC/fly ash cements and describes a model that uses these results to simulate the heat evolution processes in hydration concrete sections at early ages. The tests covered a range up to 90% ggbs and up to 65% fly ash content by mass of cement, at temperatures from 5° to 60°C. For PC/ggbs cements, the total heat of hydration can be considered as a composition of three components, that is heats from an initial Portland cement reaction, a latent ggbs hydraulic reaction and co-reactivity effects of PC and ggbs; whereas for PC/fly ash cements, the initial PC reaction dominated with a small co-reactivity effect
UR - http://dx.doi.org/10.1680/adcr.2005.17.3.121
UR - http://www.icevirtuallibrary.com/content/serial/adcr
U2 - 10.1680/adcr.2005.17.3.121
DO - 10.1680/adcr.2005.17.3.121
M3 - Article
SN - 0951-7197
VL - 17
SP - 121
EP - 132
JO - Advances in Cement Research
JF - Advances in Cement Research
IS - 3
ER -