Experimental realization of a one-way quantum computer algorithm solving Simon's problem

M. S. Tame, B. A. Bell, C. Di Franco, W. J. Wadsworth, J. G. Rarity

Research output: Contribution to journalArticlepeer-review

24 Citations (SciVal)
253 Downloads (Pure)

Abstract

We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's problem - a black-box period-finding problem that has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.

Original languageEnglish
Article number200501
Number of pages6
JournalPhysical Review Letters
Volume113
DOIs
Publication statusPublished - 11 Nov 2014

Fingerprint

Dive into the research topics of 'Experimental realization of a one-way quantum computer algorithm solving Simon's problem'. Together they form a unique fingerprint.

Cite this