Experimental measurements of ingestion through turbine rim seals. Part 3: Single and double seals

Research output: Chapter or section in a book/report/conference proceedingChapter in a published conference proceeding

10 Citations (SciVal)

Abstract

This paper describes experimental results from a research facility which experimentally models hot gas ingress into the wheel-space of an axial turbine stage. Measurements of CO2 gas concentration in the rim-seal region and inside the wheel-space are used to assess the performance of generic (though engine-representative) single and double seals in terms of the variation of concentration effectiveness with sealing flow rate. The variation of pressure in the turbine annulus, which governs externally-induced ingress, was obtained from steady pressure measurements downstream of the vanes. The benefit of using double seals is demonstrated: The ingested gas is shown to be predominately confined to the outer wheel-space radially outward of the inner seal; in the inner wheel-space, radially inward of the inner seal, the effectiveness is shown to be significantly higher. Criteria for ranking the performance of single and double seals are proposed, and the performance limit for any double seal is shown to be one in which the inner seal is exposed to rotationally-induced ingress. Although the ingress is a consequence of an unsteady, three-dimensional flow field and the cause-effect relationship between pressure and the sealing effectiveness is complex, the experimental data is shown to be successfully calculated by simple effectiveness equations developed from a theoretical model. The data illustrate that, for similar turbine-stage velocity triangles, the effectiveness can be correlated using two empirical parameters. In principle, these correlations could be extrapolated to a geometrically-similar turbine operating at enginerepresentative conditions.
Original languageEnglish
Title of host publicationProceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
Place of PublicationCopenhagen, Denmark
PublisherASME
Pages1983-1995
Number of pages13
Volume4
ISBN (Print)9780791844700
DOIs
Publication statusPublished - 2012
EventASME Turbo Expo 2012 - Copenhagen, Denmark
Duration: 11 Jun 201215 Jun 2012

Conference

ConferenceASME Turbo Expo 2012
Country/TerritoryDenmark
CityCopenhagen
Period11/06/1215/06/12

Fingerprint

Dive into the research topics of 'Experimental measurements of ingestion through turbine rim seals. Part 3: Single and double seals'. Together they form a unique fingerprint.

Cite this