Experimental investigation of a switched inertance hydraulic system with a high-speed rotary valve

Min Pan, Nigel Johnston, James Robertson, Andrew Plummer, Andrew Hillis, Huayong Yang

Research output: Contribution to journalArticlepeer-review

41 Citations (SciVal)


This paper reports on experimental investigations of a switched inertance hydraulic system (SIHS), which is designed to control the flow and pressure of a hydraulic supply. The switched system basically consists of a switching element, an inductance (inertance), and a capacitance. Two basic modes, a flow booster and a pressure booster, can be configured in a three-port SIHS. It is capable of boosting the pressure or flow with a corresponding drop in flow or pressure, respectively. This technique makes use of the inherent reactive behavior of hydraulic components. A high-speed rotary valve is used to provide sufficiently high switching frequency and to minimize the pressure and flow loss at the valve orifice, and a small diameter tube is used to provide an inductive effect. In this paper, a flow booster is introduced as the switched system for investigation. The measured steady-state and dynamic characteristics of the rotary valve are presented, and the dynamics characteristics of the flow booster are investigated in terms of pressure loss, flow loss, and system efficiency. The speed of sound is measured by analysis of the measured dynamic pressures in the inertance tube. A detailed analytical model of an SIHS is applied to analyze the experimental results. Experimental results on a flow booster rig show a very promising performance for the SIHS.

Original languageEnglish
Article number121003
JournalJournal of Dynamic Systems, Measurement, and Control
Issue number12
Publication statusPublished - 14 Sept 2015


  • digital hydraulics
  • efficient fluid power
  • rotary valve
  • speed of sound measurement
  • switched inertance hydraulic systems
  • switching valve
  • transmission line model


Dive into the research topics of 'Experimental investigation of a switched inertance hydraulic system with a high-speed rotary valve'. Together they form a unique fingerprint.

Cite this