Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine

Adamos Adamou, Ian Kennedy, Ben Farmer, Ahmed Hussei, Colin Copeland

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Vaporization injectors have been in existence for decades and are a well-proven method of preparing liquid fuels for combustion by heating them above the boiling point of their heaviest hydrocarbon ingredient. By doing so, it converts the fuels into a vapour prior to combustion.
When attempting to apply this method of fuel vaporization to micro gas turbines, manufacturing difficulties arise, due to the small complex passages that are required to direct the fuel closer to the high-temperature zone in the combustion chamber and then back to a favourable injection location. This is where the use of additive manufacturing (AM) can prove advantageous due to the complex designs that can be achieved at much smaller scales and potentially at cheaper costs when compared to traditional subtractive manufacturing.
The motivation behind the research is to improve the overall efficiency of micro-gas turbines, so they can be applied as range extenders in electric vehicles. Due to the increasing adoption of vehicle electrification.
This paper covers the comparison of experimental results for two traditionally manufactured injectors and a third selective laser melted injector (SLM), which were tested in a swirl stabilised micro gas turbine can type combustor on the University of Baths gas stand. The operating range of the tests was 1-4 Bar and 30 to 630 oC inlet air. To the authors knowledge, this is the first such comparison to be made for a gas turbine in open literature, despite wide reports of AM being used in large gas turbines.
From the tests, it was found that the 3 and 8 hole machined injectors could not produce stable combustion at the desired operating condition of 4 Bar and 630 oC. The SLM 8 hole injector, however, was able to sustain a stable and constant burn at this design point with low NOx, CO and THC emissions. It was also noticed that the flame colour changed from a yellow flame when testing the first two injectors, to a blue flame when testing the SLM injector suggesting more complete combustion was being achieved due to the lack of soot in burned products, this was assumed to be due to the fuel reaching its saturation conditions within the injector.
A number of measurements were taken at various points around the combustor, which included temperatures, pressures and emissions readings. These results were then used to create and validate a non-premixed steady diffusion flamelet model in ANSYS Fluent for the AM injector case. The CFD results were found to overpredict the temperature by approximately 10% when compared to the thermocouple values. This was found to be similar to other studies with similar experimental and computational setups, so it was deemed acceptable.
From the validated CFD model, the heat flux at the front surface of the injector was extracted, to be used in a simple heat balance model. Based on a conservative estimate of fuel temperature, the model found that the SLM injectors should have created very near saturation conditions in the nozzle. As this was a conservative analysis, it confirms the experimental findings that partially vaporized fuel was exciting the injector. The model also showed that the fuel in the traditionally machined, 8 hole injector would most likely exit as a liquid.
Original languageEnglish
Title of host publicationProceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
Publication statusAccepted/In press - 6 Feb 2019
EventASME Turbo Expo 2019 - Arizona, Phoenix, USA United States
Duration: 17 Jun 201921 Jun 2019
https://event.asme.org/Events/media/library/resources/turbo/Turbo-Expo-2019-Program.pdf

Conference

ConferenceASME Turbo Expo 2019
CountryUSA United States
CityPhoenix
Period17/06/1921/06/19
Internet address

Cite this

Adamou, A., Kennedy, I., Farmer, B., Hussei, A., & Copeland, C. (Accepted/In press). Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine. In Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition [GT2019-90245]

Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine. / Adamou, Adamos; Kennedy, Ian; Farmer, Ben; Hussei, Ahmed; Copeland, Colin.

Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. 2019. GT2019-90245.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Adamou, A, Kennedy, I, Farmer, B, Hussei, A & Copeland, C 2019, Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine. in Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition., GT2019-90245, ASME Turbo Expo 2019, Phoenix, USA United States, 17/06/19.
Adamou A, Kennedy I, Farmer B, Hussei A, Copeland C. Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine. In Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. 2019. GT2019-90245
Adamou, Adamos ; Kennedy, Ian ; Farmer, Ben ; Hussei, Ahmed ; Copeland, Colin. / Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine. Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. 2019.
@inproceedings{ea82736f8d174987ae3680f5b42307c6,
title = "Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine",
abstract = "Vaporization injectors have been in existence for decades and are a well-proven method of preparing liquid fuels for combustion by heating them above the boiling point of their heaviest hydrocarbon ingredient. By doing so, it converts the fuels into a vapour prior to combustion. When attempting to apply this method of fuel vaporization to micro gas turbines, manufacturing difficulties arise, due to the small complex passages that are required to direct the fuel closer to the high-temperature zone in the combustion chamber and then back to a favourable injection location. This is where the use of additive manufacturing (AM) can prove advantageous due to the complex designs that can be achieved at much smaller scales and potentially at cheaper costs when compared to traditional subtractive manufacturing. The motivation behind the research is to improve the overall efficiency of micro-gas turbines, so they can be applied as range extenders in electric vehicles. Due to the increasing adoption of vehicle electrification. This paper covers the comparison of experimental results for two traditionally manufactured injectors and a third selective laser melted injector (SLM), which were tested in a swirl stabilised micro gas turbine can type combustor on the University of Baths gas stand. The operating range of the tests was 1-4 Bar and 30 to 630 oC inlet air. To the authors knowledge, this is the first such comparison to be made for a gas turbine in open literature, despite wide reports of AM being used in large gas turbines. From the tests, it was found that the 3 and 8 hole machined injectors could not produce stable combustion at the desired operating condition of 4 Bar and 630 oC. The SLM 8 hole injector, however, was able to sustain a stable and constant burn at this design point with low NOx, CO and THC emissions. It was also noticed that the flame colour changed from a yellow flame when testing the first two injectors, to a blue flame when testing the SLM injector suggesting more complete combustion was being achieved due to the lack of soot in burned products, this was assumed to be due to the fuel reaching its saturation conditions within the injector. A number of measurements were taken at various points around the combustor, which included temperatures, pressures and emissions readings. These results were then used to create and validate a non-premixed steady diffusion flamelet model in ANSYS Fluent for the AM injector case. The CFD results were found to overpredict the temperature by approximately 10{\%} when compared to the thermocouple values. This was found to be similar to other studies with similar experimental and computational setups, so it was deemed acceptable. From the validated CFD model, the heat flux at the front surface of the injector was extracted, to be used in a simple heat balance model. Based on a conservative estimate of fuel temperature, the model found that the SLM injectors should have created very near saturation conditions in the nozzle. As this was a conservative analysis, it confirms the experimental findings that partially vaporized fuel was exciting the injector. The model also showed that the fuel in the traditionally machined, 8 hole injector would most likely exit as a liquid.",
author = "Adamos Adamou and Ian Kennedy and Ben Farmer and Ahmed Hussei and Colin Copeland",
year = "2019",
month = "2",
day = "6",
language = "English",
booktitle = "Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition",

}

TY - GEN

T1 - Experimental and Computational Analysis of an Additive Manufactured Vaporization Injector for a Micro-Gas Turbine

AU - Adamou, Adamos

AU - Kennedy, Ian

AU - Farmer, Ben

AU - Hussei, Ahmed

AU - Copeland, Colin

PY - 2019/2/6

Y1 - 2019/2/6

N2 - Vaporization injectors have been in existence for decades and are a well-proven method of preparing liquid fuels for combustion by heating them above the boiling point of their heaviest hydrocarbon ingredient. By doing so, it converts the fuels into a vapour prior to combustion. When attempting to apply this method of fuel vaporization to micro gas turbines, manufacturing difficulties arise, due to the small complex passages that are required to direct the fuel closer to the high-temperature zone in the combustion chamber and then back to a favourable injection location. This is where the use of additive manufacturing (AM) can prove advantageous due to the complex designs that can be achieved at much smaller scales and potentially at cheaper costs when compared to traditional subtractive manufacturing. The motivation behind the research is to improve the overall efficiency of micro-gas turbines, so they can be applied as range extenders in electric vehicles. Due to the increasing adoption of vehicle electrification. This paper covers the comparison of experimental results for two traditionally manufactured injectors and a third selective laser melted injector (SLM), which were tested in a swirl stabilised micro gas turbine can type combustor on the University of Baths gas stand. The operating range of the tests was 1-4 Bar and 30 to 630 oC inlet air. To the authors knowledge, this is the first such comparison to be made for a gas turbine in open literature, despite wide reports of AM being used in large gas turbines. From the tests, it was found that the 3 and 8 hole machined injectors could not produce stable combustion at the desired operating condition of 4 Bar and 630 oC. The SLM 8 hole injector, however, was able to sustain a stable and constant burn at this design point with low NOx, CO and THC emissions. It was also noticed that the flame colour changed from a yellow flame when testing the first two injectors, to a blue flame when testing the SLM injector suggesting more complete combustion was being achieved due to the lack of soot in burned products, this was assumed to be due to the fuel reaching its saturation conditions within the injector. A number of measurements were taken at various points around the combustor, which included temperatures, pressures and emissions readings. These results were then used to create and validate a non-premixed steady diffusion flamelet model in ANSYS Fluent for the AM injector case. The CFD results were found to overpredict the temperature by approximately 10% when compared to the thermocouple values. This was found to be similar to other studies with similar experimental and computational setups, so it was deemed acceptable. From the validated CFD model, the heat flux at the front surface of the injector was extracted, to be used in a simple heat balance model. Based on a conservative estimate of fuel temperature, the model found that the SLM injectors should have created very near saturation conditions in the nozzle. As this was a conservative analysis, it confirms the experimental findings that partially vaporized fuel was exciting the injector. The model also showed that the fuel in the traditionally machined, 8 hole injector would most likely exit as a liquid.

AB - Vaporization injectors have been in existence for decades and are a well-proven method of preparing liquid fuels for combustion by heating them above the boiling point of their heaviest hydrocarbon ingredient. By doing so, it converts the fuels into a vapour prior to combustion. When attempting to apply this method of fuel vaporization to micro gas turbines, manufacturing difficulties arise, due to the small complex passages that are required to direct the fuel closer to the high-temperature zone in the combustion chamber and then back to a favourable injection location. This is where the use of additive manufacturing (AM) can prove advantageous due to the complex designs that can be achieved at much smaller scales and potentially at cheaper costs when compared to traditional subtractive manufacturing. The motivation behind the research is to improve the overall efficiency of micro-gas turbines, so they can be applied as range extenders in electric vehicles. Due to the increasing adoption of vehicle electrification. This paper covers the comparison of experimental results for two traditionally manufactured injectors and a third selective laser melted injector (SLM), which were tested in a swirl stabilised micro gas turbine can type combustor on the University of Baths gas stand. The operating range of the tests was 1-4 Bar and 30 to 630 oC inlet air. To the authors knowledge, this is the first such comparison to be made for a gas turbine in open literature, despite wide reports of AM being used in large gas turbines. From the tests, it was found that the 3 and 8 hole machined injectors could not produce stable combustion at the desired operating condition of 4 Bar and 630 oC. The SLM 8 hole injector, however, was able to sustain a stable and constant burn at this design point with low NOx, CO and THC emissions. It was also noticed that the flame colour changed from a yellow flame when testing the first two injectors, to a blue flame when testing the SLM injector suggesting more complete combustion was being achieved due to the lack of soot in burned products, this was assumed to be due to the fuel reaching its saturation conditions within the injector. A number of measurements were taken at various points around the combustor, which included temperatures, pressures and emissions readings. These results were then used to create and validate a non-premixed steady diffusion flamelet model in ANSYS Fluent for the AM injector case. The CFD results were found to overpredict the temperature by approximately 10% when compared to the thermocouple values. This was found to be similar to other studies with similar experimental and computational setups, so it was deemed acceptable. From the validated CFD model, the heat flux at the front surface of the injector was extracted, to be used in a simple heat balance model. Based on a conservative estimate of fuel temperature, the model found that the SLM injectors should have created very near saturation conditions in the nozzle. As this was a conservative analysis, it confirms the experimental findings that partially vaporized fuel was exciting the injector. The model also showed that the fuel in the traditionally machined, 8 hole injector would most likely exit as a liquid.

M3 - Conference contribution

BT - Proceedings of ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition

ER -