Abstract
This paper considers two-dimensional gravity solitary waves moving through a body of density stratified water lying below vacuum. The fluid domain is assumed to lie above an impenetrable flat ocean bed, while the interface between the water and vacuum is a free boundary where the pressure is constant. We prove that, for any smooth choice of upstream velocity field and density function, there exists a continuous curve of such solutions that includes large-amplitude surface waves. Furthermore, following this solution curve, one encounters waves that come arbitrarily close to possessing points of horizontal stagnation. We also provide a number of results characterizing the qualitative features of solitary stratified waves. In part, these include bounds on the wave speed from above and below, some of which are new even for constant density flow; an a priori bound on the velocity field and lower bound on the pressure; a proof of the nonexistence of monotone bores in this physical regime; and a theorem ensuring that all supercritical solitary waves of elevation have an axis of even symmetry.
Original language | English |
---|---|
Pages (from-to) | 517-576 |
Number of pages | 60 |
Journal | Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire |
Volume | 35 |
Issue number | 2 |
Early online date | 1 Jul 2017 |
DOIs | |
Publication status | Published - 1 Apr 2018 |
Funding
This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while the authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Spring 2017 semester.
Keywords
- Free boundary problems
- Global bifurcation
- Stratified solitary waves
- Water waves
ASJC Scopus subject areas
- Analysis
- Mathematical Physics
- Applied Mathematics