Abstract
Cationic Lewis acids (LAs) are gaining interest as targets for frustrated Lewis pair (FLP)-mediated catalysis. Unlike neutral boranes, which are the most prevalent LAs for FLP hydrogenations, the Lewis acidity of cations can be tuned through modulation of the counteranion; however, detailed studies on such anion effects are currently lacking in the literature. Herein, we present experimental and computational studies which probe the mechanism of H2 activation using iPr3SnOTf (1-OTf) in conjunction with a coordinating (quinuclidine; qui) and noncoordinating (2,4,6-collidine; col) base and compare its reactivity with {iPr3Sn·base}{Al[OC(CF3)3]4} (base = qui/col) systems which lack a coordinating anion to investigate the active species responsible for H2 activation and hence resolve any mechanistic roles for OTf– in the iPr3SnOTf-mediated pathway.
Original language | English |
---|---|
Pages (from-to) | 7573–7583 |
Journal | ACS Catalysis |
Volume | 10 |
Issue number | 14 |
Early online date | 8 Jun 2020 |
DOIs | |
Publication status | Published - 17 Jul 2020 |