Entrance and exit at infinity for stable jump diffusions

Andreas Kyprianou, Leif Doering

Research output: Contribution to journalArticle

Abstract

In his seminal work from the 1950s, William Feller classified all one-dimensional diffusions on −∞≤a<b≤∞ in terms of their ability to access the boundary (Feller's test for explosions) and to enter the interior from the boundary. Feller's technique is restricted to diffusion processes as the corresponding differential generators allow explicit computations and the use of Hille-Yosida theory. In the present article we study exit and entrance from infinity for the most natural generalization, that is, jump diffusions of the form dZt=σ(Zt−)dXt, driven by stable Lévy processes for α∈(0,2). Many results have been proved for jump diffusions, employing a variety of techniques developed after Feller's work but exit and entrance from infinite boundaries has long remained open. We show that the presence of jumps implies features not seen in the diffusive setting without drift. Finite time explosion is possible for α∈(0,1), whereas entrance from different kinds of infinity is possible for α∈[1,2). We derive necessary and sufficient conditions on σ so that (i) non-exploding solutions exist and (ii) the corresponding transition semigroup extends to an entrance point at `infinity'. Our proofs are based on very recent developments for path transformations of stable processes via the Lamperti-Kiu representation and new Wiener-Hopf factorisations for Lévy processes that lie therein. The arguments draw together original and intricate applications of results using the Riesz-Bogdan--Żak transformation, entrance laws for self-similar Markov processes, perpetual integrals of Lévy processes and fluctuation theory, which have not been used before in the SDE setting, thereby allowing us to employ classical theory such as Hunt-Nagasawa duality and Getoor's characterisation of transience and recurrence.
Original languageEnglish
Number of pages55
JournalAnnals of Probability
Publication statusAccepted/In press - 7 Jul 2019

Cite this

Entrance and exit at infinity for stable jump diffusions. / Kyprianou, Andreas; Doering, Leif.

In: Annals of Probability, 07.07.2019.

Research output: Contribution to journalArticle

@article{30aee8b887c948ba970a56531e1fd2bd,
title = "Entrance and exit at infinity for stable jump diffusions",
abstract = "In his seminal work from the 1950s, William Feller classified all one-dimensional diffusions on −∞≤a<b≤∞ in terms of their ability to access the boundary (Feller's test for explosions) and to enter the interior from the boundary. Feller's technique is restricted to diffusion processes as the corresponding differential generators allow explicit computations and the use of Hille-Yosida theory. In the present article we study exit and entrance from infinity for the most natural generalization, that is, jump diffusions of the form dZt=σ(Zt−)dXt, driven by stable L{\'e}vy processes for α∈(0,2). Many results have been proved for jump diffusions, employing a variety of techniques developed after Feller's work but exit and entrance from infinite boundaries has long remained open. We show that the presence of jumps implies features not seen in the diffusive setting without drift. Finite time explosion is possible for α∈(0,1), whereas entrance from different kinds of infinity is possible for α∈[1,2). We derive necessary and sufficient conditions on σ so that (i) non-exploding solutions exist and (ii) the corresponding transition semigroup extends to an entrance point at `infinity'. Our proofs are based on very recent developments for path transformations of stable processes via the Lamperti-Kiu representation and new Wiener-Hopf factorisations for L{\'e}vy processes that lie therein. The arguments draw together original and intricate applications of results using the Riesz-Bogdan--Żak transformation, entrance laws for self-similar Markov processes, perpetual integrals of L{\'e}vy processes and fluctuation theory, which have not been used before in the SDE setting, thereby allowing us to employ classical theory such as Hunt-Nagasawa duality and Getoor's characterisation of transience and recurrence.",
author = "Andreas Kyprianou and Leif Doering",
note = "This paper has been accepted subject to Minor revision at the Annals of Probability",
year = "2019",
month = "7",
day = "7",
language = "English",
journal = "Annals of Probability",
issn = "0091-1798",
publisher = "Institute of Mathematical Statistics",

}

TY - JOUR

T1 - Entrance and exit at infinity for stable jump diffusions

AU - Kyprianou, Andreas

AU - Doering, Leif

N1 - This paper has been accepted subject to Minor revision at the Annals of Probability

PY - 2019/7/7

Y1 - 2019/7/7

N2 - In his seminal work from the 1950s, William Feller classified all one-dimensional diffusions on −∞≤a<b≤∞ in terms of their ability to access the boundary (Feller's test for explosions) and to enter the interior from the boundary. Feller's technique is restricted to diffusion processes as the corresponding differential generators allow explicit computations and the use of Hille-Yosida theory. In the present article we study exit and entrance from infinity for the most natural generalization, that is, jump diffusions of the form dZt=σ(Zt−)dXt, driven by stable Lévy processes for α∈(0,2). Many results have been proved for jump diffusions, employing a variety of techniques developed after Feller's work but exit and entrance from infinite boundaries has long remained open. We show that the presence of jumps implies features not seen in the diffusive setting without drift. Finite time explosion is possible for α∈(0,1), whereas entrance from different kinds of infinity is possible for α∈[1,2). We derive necessary and sufficient conditions on σ so that (i) non-exploding solutions exist and (ii) the corresponding transition semigroup extends to an entrance point at `infinity'. Our proofs are based on very recent developments for path transformations of stable processes via the Lamperti-Kiu representation and new Wiener-Hopf factorisations for Lévy processes that lie therein. The arguments draw together original and intricate applications of results using the Riesz-Bogdan--Żak transformation, entrance laws for self-similar Markov processes, perpetual integrals of Lévy processes and fluctuation theory, which have not been used before in the SDE setting, thereby allowing us to employ classical theory such as Hunt-Nagasawa duality and Getoor's characterisation of transience and recurrence.

AB - In his seminal work from the 1950s, William Feller classified all one-dimensional diffusions on −∞≤a<b≤∞ in terms of their ability to access the boundary (Feller's test for explosions) and to enter the interior from the boundary. Feller's technique is restricted to diffusion processes as the corresponding differential generators allow explicit computations and the use of Hille-Yosida theory. In the present article we study exit and entrance from infinity for the most natural generalization, that is, jump diffusions of the form dZt=σ(Zt−)dXt, driven by stable Lévy processes for α∈(0,2). Many results have been proved for jump diffusions, employing a variety of techniques developed after Feller's work but exit and entrance from infinite boundaries has long remained open. We show that the presence of jumps implies features not seen in the diffusive setting without drift. Finite time explosion is possible for α∈(0,1), whereas entrance from different kinds of infinity is possible for α∈[1,2). We derive necessary and sufficient conditions on σ so that (i) non-exploding solutions exist and (ii) the corresponding transition semigroup extends to an entrance point at `infinity'. Our proofs are based on very recent developments for path transformations of stable processes via the Lamperti-Kiu representation and new Wiener-Hopf factorisations for Lévy processes that lie therein. The arguments draw together original and intricate applications of results using the Riesz-Bogdan--Żak transformation, entrance laws for self-similar Markov processes, perpetual integrals of Lévy processes and fluctuation theory, which have not been used before in the SDE setting, thereby allowing us to employ classical theory such as Hunt-Nagasawa duality and Getoor's characterisation of transience and recurrence.

M3 - Article

JO - Annals of Probability

JF - Annals of Probability

SN - 0091-1798

ER -